File size: 4,457 Bytes
0d24772
 
2367c1f
 
 
 
0d24772
 
2367c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d24772
 
2367c1f
 
 
 
 
0d24772
2367c1f
 
 
0d24772
 
 
2367c1f
0d24772
 
 
 
 
2367c1f
0d24772
 
 
 
 
 
 
 
2367c1f
0d24772
 
 
 
 
 
2367c1f
 
 
0d24772
 
 
2367c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# ai_providers.py

from abc import ABC, abstractmethod
from typing import Dict, Any, Optional
import os
from dotenv import load_dotenv
import time

# Corrected import statement
from config import get_ai_config  # Import the function instead of AI_CONFIG

class AIProvider(ABC):
    @abstractmethod
    def get_completion(self, prompt: str, **kwargs) -> str:
        pass

    @abstractmethod
    def get_config(self) -> Dict[str, Any]:
        pass

class GroqProvider(AIProvider):
    def __init__(self, api_key: str, model: str = "deepseek-ai/deepseek-math-7b-instruct"):
        self.api_key = api_key
        self.model = model
        
    def get_completion(self, prompt: str, **kwargs) -> str:
        from groq import Groq
        
        client = Groq(api_key=self.api_key)
        
        # Configure default parameters
        params = {
            "temperature": kwargs.get("temperature", 0.7),
            "max_tokens": kwargs.get("max_tokens", 4000),
            "top_p": kwargs.get("top_p", 1.0),
            "stop": kwargs.get("stop", None)
        }
        
        # Add retry logic for robustness
        max_retries = 3
        retry_delay = 1
        
        for attempt in range(max_retries):
            try:
                completion = client.chat.completions.create(
                    model=self.model,
                    messages=[{"role": "user", "content": prompt}],
                    **params
                )
                return completion.choices[0].message.content
                
            except Exception as e:
                if attempt == max_retries - 1:
                    raise e
                time.sleep(retry_delay * (attempt + 1))
        
    def get_config(self) -> Dict[str, Any]:
        return {
            "config_list": [{
                "model": self.model,
                "api_key": self.api_key,
                "temperature": 0.7,
                "max_tokens": 4000
            }]
        }

class OpenAIProvider(AIProvider):
    def __init__(self, api_key: str, model: str = "gpt-4"):
        self.api_key = api_key
        self.model = model
        
    def get_completion(self, prompt: str, **kwargs) -> str:
        import openai
        openai.api_key = self.api_key
        
        response = openai.ChatCompletion.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            **kwargs
        )
        return response.choices[0].message.content
        
    def get_config(self) -> Dict[str, Any]:
        return {
            "config_list": [{
                "model": self.model,
                "api_key": self.api_key,
                "temperature": 0.7,
                "max_tokens": 4000
            }]
        }

class AnthropicProvider(AIProvider):
    def __init__(self, api_key: str, model: str = "claude-3-opus-20240229"):
        self.api_key = api_key
        self.model = model
        
    def get_completion(self, prompt: str, **kwargs) -> str:
        import anthropic
        
        client = anthropic.Client(api_key=self.api_key)
        response = client.messages.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            **kwargs
        )
        return response.content[0].text
        
    def get_config(self) -> Dict[str, Any]:
        return {
            "config_list": [{
                "model": self.model,
                "api_key": self.api_key,
                "temperature": 0.7,
                "max_tokens": 4000
            }]
        }

class AIProviderFactory:
    @staticmethod
    def create_provider(provider_type: str, api_key: Optional[str] = None, model: Optional[str] = None) -> AIProvider:
        if not api_key:
            load_dotenv()
            
        providers = {
            "openai": (OpenAIProvider, os.getenv("OPENAI_API_KEY"), "gpt-4"),
            "groq": (GroqProvider, os.getenv("GROQ_API_KEY"), "deepseek-ai/deepseek-r1-distill-llama-70b"),
            "anthropic": (AnthropicProvider, os.getenv("ANTHROPIC_API_KEY"), "claude-3-opus-20240229")
        }
        
        if provider_type not in providers:
            raise ValueError(f"Unsupported provider: {provider_type}")
            
        ProviderClass, default_api_key, default_model = providers[provider_type]
        return ProviderClass(
            api_key=api_key or default_api_key,
            model=model or default_model
        )