Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,143 +1,43 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Set the device based on availability
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# Define the
|
28 |
-
|
29 |
-
|
30 |
-
# Randomize seed if the checkbox is selected
|
31 |
-
if randomize_seed:
|
32 |
-
seed = random.randint(0, MAX_SEED)
|
33 |
-
|
34 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
35 |
-
|
36 |
-
# Generate the animation using the pipeline
|
37 |
-
animation = pipe(
|
38 |
-
prompt=prompt,
|
39 |
-
negative_prompt=negative_prompt,
|
40 |
-
guidance_scale=guidance_scale,
|
41 |
-
num_inference_steps=num_inference_steps,
|
42 |
-
width=width,
|
43 |
-
height=height,
|
44 |
-
generator=generator
|
45 |
-
).images[0] # Assuming the model generates images in the `.images` property
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"A cat playing with a ball in a garden",
|
52 |
-
"A dancing astronaut in space",
|
53 |
-
"A flying dragon in the sky at sunset",
|
54 |
-
]
|
55 |
-
|
56 |
-
# Define CSS for styling
|
57 |
-
css = """
|
58 |
-
#col-container {
|
59 |
-
margin: 0 auto;
|
60 |
-
max-width: 640px;
|
61 |
-
}
|
62 |
-
"""
|
63 |
-
|
64 |
-
# Build the Gradio UI
|
65 |
-
with gr.Blocks(css=css) as demo:
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
with gr.Row():
|
73 |
-
prompt = gr.Text(
|
74 |
-
label="Prompt",
|
75 |
-
show_label=False,
|
76 |
-
max_lines=1,
|
77 |
-
placeholder="Enter your prompt",
|
78 |
-
container=False,
|
79 |
-
)
|
80 |
-
run_button = gr.Button("Run", scale=0)
|
81 |
-
|
82 |
-
result = gr.Image(label="Generated Animation", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
|
86 |
-
negative_prompt = gr.Text(
|
87 |
-
label="Negative prompt",
|
88 |
-
max_lines=1,
|
89 |
-
placeholder="Enter a negative prompt",
|
90 |
-
visible=True,
|
91 |
-
)
|
92 |
-
|
93 |
-
seed = gr.Slider(
|
94 |
-
label="Seed",
|
95 |
-
minimum=0,
|
96 |
-
maximum=MAX_SEED,
|
97 |
-
step=1,
|
98 |
-
value=0,
|
99 |
-
)
|
100 |
-
|
101 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
102 |
-
|
103 |
-
with gr.Row():
|
104 |
-
width = gr.Slider(
|
105 |
-
label="Width",
|
106 |
-
minimum=256,
|
107 |
-
maximum=MAX_IMAGE_SIZE,
|
108 |
-
step=32,
|
109 |
-
value=1024,
|
110 |
-
)
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024,
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=7.5,
|
126 |
-
)
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=50,
|
131 |
-
step=1,
|
132 |
-
value=30,
|
133 |
-
)
|
134 |
-
|
135 |
-
# Example prompts for user selection
|
136 |
-
gr.Examples(
|
137 |
-
examples=examples,
|
138 |
-
inputs=[prompt]
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
|
3 |
+
from diffusers.utils import export_to_gif
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import gradio as gr
|
7 |
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
+
|
11 |
+
step = 4 # Options: [1,2,4,8]
|
12 |
+
repo = "ByteDance/AnimateDiff-Lightning"
|
13 |
+
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
14 |
+
base = "emilianJR/epiCRealism"
|
15 |
+
|
16 |
+
adapter = MotionAdapter().to(device, dtype)
|
17 |
+
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
18 |
+
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
19 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
20 |
+
|
21 |
+
def animate_image(prompt, guidance_scale, num_inference_steps):
|
22 |
+
output = pipe(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps)
|
23 |
+
gif_path = "animation.gif"
|
24 |
+
export_to_gif(output.frames[0], gif_path)
|
25 |
+
return gif_path
|
26 |
+
|
27 |
+
# Define the Gradio Interface
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
gr.Markdown("# AnimateDiff API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
with gr.Row():
|
32 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A girl smiling", value="A girl smiling")
|
33 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, value=1.0, step=0.1)
|
34 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=8, value=step, step=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
gif_output = gr.Image(label="Generated Animation")
|
37 |
+
|
38 |
+
# Button to run the pipeline
|
39 |
+
run_button = gr.Button("Generate Animation")
|
40 |
+
run_button.click(animate_image, inputs=[prompt, guidance_scale, num_inference_steps], outputs=gif_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Launch the interface
|
43 |
+
demo.launch()
|
|