Spaces:
Sleeping
Sleeping
Jackie2235
commited on
Commit
·
773120e
1
Parent(s):
487d029
Upload app.py, version from Jiaqi
Browse files
app.py
CHANGED
@@ -1,16 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from keytotext import pipeline
|
4 |
from PIL import Image
|
5 |
|
6 |
import json
|
7 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
8 |
-
import gzip
|
9 |
-
import os
|
10 |
-
import torch
|
11 |
import pickle
|
12 |
-
import
|
13 |
-
import numpy as np
|
14 |
|
15 |
############
|
16 |
## Main page
|
@@ -40,7 +35,7 @@ option1 = st.sidebar.selectbox(
|
|
40 |
('multi-qa-MiniLM-L6-cos-v1','null','null'))
|
41 |
|
42 |
option2 = st.sidebar.selectbox(
|
43 |
-
'Which
|
44 |
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
|
45 |
|
46 |
st.sidebar.success("Load Successfully!")
|
@@ -49,22 +44,28 @@ st.sidebar.success("Load Successfully!")
|
|
49 |
# print("Warning: No GPU found. Please add GPU to your notebook")
|
50 |
|
51 |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
52 |
-
|
|
|
|
|
|
|
53 |
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
|
54 |
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
|
55 |
|
56 |
-
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
|
57 |
-
cross_encoder = CrossEncoder(option2, device='cpu')
|
58 |
-
|
59 |
passages = []
|
60 |
|
61 |
# load pre-train embeedings files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
|
63 |
-
|
64 |
-
|
65 |
-
cache_data = pickle.load(fIn)
|
66 |
-
passages = cache_data['sentences']
|
67 |
-
corpus_embeddings = cache_data['embeddings']
|
68 |
|
69 |
from rank_bm25 import BM25Okapi
|
70 |
from sklearn.feature_extraction import _stop_words
|
@@ -75,15 +76,24 @@ import re
|
|
75 |
|
76 |
import yake
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
# We lower case our text and remove stop-words from indexing
|
88 |
def bm25_tokenizer(text):
|
89 |
tokenized_doc = []
|
@@ -94,10 +104,14 @@ def bm25_tokenizer(text):
|
|
94 |
tokenized_doc.append(token)
|
95 |
return tokenized_doc
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
tokenized_corpus
|
|
|
|
|
|
|
100 |
|
|
|
101 |
bm25 = BM25Okapi(tokenized_corpus)
|
102 |
|
103 |
def word_len(s):
|
@@ -106,205 +120,155 @@ def word_len(s):
|
|
106 |
|
107 |
# This function will search all wikipedia articles for passages that
|
108 |
# answer the query
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
print("Input query:", query)
|
111 |
-
|
112 |
|
113 |
##### BM25 search (lexical search) #####
|
114 |
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
115 |
-
|
116 |
-
|
117 |
-
bm25_hits =
|
118 |
-
|
119 |
-
#print("Top-10 lexical search (BM25) hits")
|
120 |
-
qe_string = []
|
121 |
-
for hit in bm25_hits[0:1000]:
|
122 |
-
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
|
123 |
-
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
|
124 |
-
|
125 |
-
sub_string = []
|
126 |
-
for item in qe_string:
|
127 |
-
for sub_item in item.split(","):
|
128 |
-
sub_string.append(sub_item)
|
129 |
-
#print(sub_string)
|
130 |
-
total_qe.append(sub_string)
|
131 |
-
|
132 |
-
##### Sematic Search #####
|
133 |
-
# Encode the query using the bi-encoder and find potentially relevant passages
|
134 |
-
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
135 |
-
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
|
136 |
-
hits = hits[0] # Get the hits for the first query
|
137 |
|
138 |
-
##### Re-Ranking #####
|
139 |
-
# Now, score all retrieved passages with the cross_encoder
|
140 |
-
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
141 |
-
cross_scores = cross_encoder.predict(cross_inp)
|
142 |
-
|
143 |
-
# Sort results by the cross-encoder scores
|
144 |
-
for idx in range(len(cross_scores)):
|
145 |
-
hits[idx]['cross-score'] = cross_scores[idx]
|
146 |
-
|
147 |
-
# Output of top-10 hits from bi-encoder
|
148 |
-
#print("\n-------------------------\n")
|
149 |
-
#print("Top-N Bi-Encoder Retrieval hits")
|
150 |
-
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
151 |
-
qe_string = []
|
152 |
-
for hit in hits[0:1000]:
|
153 |
-
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
|
154 |
-
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
|
155 |
-
#print(qe_string)
|
156 |
-
total_qe.append(qe_string)
|
157 |
-
|
158 |
-
# Output of top-10 hits from re-ranker
|
159 |
-
#print("\n-------------------------\n")
|
160 |
-
#print("Top-N Cross-Encoder Re-ranker hits")
|
161 |
-
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
162 |
-
qe_string = []
|
163 |
-
for hit in hits[0:1000]:
|
164 |
-
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
|
165 |
-
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
|
166 |
-
#print(qe_string)
|
167 |
-
total_qe.append(qe_string)
|
168 |
-
|
169 |
-
# Total Results
|
170 |
-
total_qe.append(qe_string)
|
171 |
-
st.write("E-Commerce Query Expansion Results: \n")
|
172 |
-
|
173 |
-
res = []
|
174 |
-
for sub_list in total_qe:
|
175 |
-
for i in sub_list:
|
176 |
-
rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
|
177 |
-
rs_final = re.sub("\x20\x20", "\n", rs)
|
178 |
-
#st.write(rs_final.strip())
|
179 |
-
res.append(rs_final.strip())
|
180 |
-
|
181 |
-
res_clean = []
|
182 |
-
for out in res:
|
183 |
-
if len(out) > 20:
|
184 |
-
keywords = custom_kw_extractor.extract_keywords(out)
|
185 |
-
for key in keywords:
|
186 |
-
res_clean.append(key[0])
|
187 |
-
else:
|
188 |
-
res_clean.append(out)
|
189 |
-
|
190 |
-
show_out = []
|
191 |
-
for i in res_clean:
|
192 |
-
num = word_len(i)
|
193 |
-
if num > 1:
|
194 |
-
show_out.append(i)
|
195 |
-
unique_list = list(set(show_out))
|
196 |
-
new_unique_list = [item for item in unique_list if item != query]
|
197 |
-
Lowercasing_list = [item.lower() for item in new_unique_list]
|
198 |
-
st.write(Lowercasing_list[0:maxtags_sidebar])
|
199 |
-
|
200 |
-
return Lowercasing_list
|
201 |
-
|
202 |
-
def search_nolog(query):
|
203 |
-
total_qe = []
|
204 |
-
##### BM25 search (lexical search) #####
|
205 |
-
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
206 |
-
top_n = np.argpartition(bm25_scores, -5)[-5:]
|
207 |
-
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
|
208 |
-
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
209 |
-
|
210 |
-
qe_string = []
|
211 |
-
for hit in bm25_hits[0:1000]:
|
212 |
-
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
|
213 |
-
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
|
214 |
-
|
215 |
-
sub_string = []
|
216 |
-
for item in qe_string:
|
217 |
-
for sub_item in item.split(","):
|
218 |
-
sub_string.append(sub_item)
|
219 |
-
total_qe.append(sub_string)
|
220 |
|
221 |
##### Sematic Search #####
|
222 |
# Encode the query using the bi-encoder and find potentially relevant passages
|
223 |
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
224 |
-
|
225 |
-
|
|
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
230 |
cross_scores = cross_encoder.predict(cross_inp)
|
231 |
-
|
232 |
-
# Sort results by the cross-encoder scores
|
233 |
for idx in range(len(cross_scores)):
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
# Total Results
|
253 |
-
total_qe.append(qe_string)
|
254 |
-
|
255 |
-
res = []
|
256 |
-
for sub_list in total_qe:
|
257 |
-
for i in sub_list:
|
258 |
-
rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
|
259 |
-
rs_final = re.sub("\x20\x20", "\n", rs)
|
260 |
-
res.append(rs_final.strip())
|
261 |
-
|
262 |
-
res_clean = []
|
263 |
-
for out in res:
|
264 |
-
if len(out) > 20:
|
265 |
-
keywords = custom_kw_extractor.extract_keywords(out)
|
266 |
-
for key in keywords:
|
267 |
-
res_clean.append(key[0])
|
268 |
-
else:
|
269 |
-
res_clean.append(out)
|
270 |
-
|
271 |
-
show_out = []
|
272 |
-
for i in res_clean:
|
273 |
-
num = word_len(i)
|
274 |
-
if num > 1:
|
275 |
-
show_out.append(i)
|
276 |
-
|
277 |
-
return show_out
|
278 |
-
|
279 |
-
def reranking():
|
280 |
-
rerank_list = []
|
281 |
-
reres = []
|
282 |
-
remove_dup = []
|
283 |
-
rerank_list = search_nolog(query = user_query)
|
284 |
-
unique_list = list(set(rerank_list))
|
285 |
-
Lowercasing_list = [item.lower() for item in unique_list]
|
286 |
-
new_unique_list = [item for item in Lowercasing_list if item != user_query]
|
287 |
-
|
288 |
-
for i in new_unique_list:
|
289 |
-
clean_string = i.strip()
|
290 |
-
if clean_string not in remove_dup:
|
291 |
-
remove_dup.append(clean_string)
|
292 |
-
|
293 |
-
st.write("E-Commerce Query Expansion Results: \n")
|
294 |
-
st.write(remove_dup[0:maxtags_sidebar])
|
295 |
-
|
296 |
-
for i in remove_dup[0:maxtags_sidebar]:
|
297 |
-
reres.append(i)
|
298 |
-
np.random.seed(7)
|
299 |
-
np.random.shuffle(reres)
|
300 |
-
st.write("Reranking Results: \n")
|
301 |
-
st.write(reres)
|
302 |
-
|
303 |
-
st.write("## Results:")
|
304 |
-
if st.button('Generated Expansion'):
|
305 |
-
out_res = search(query = user_query)
|
306 |
-
#st.success(out_res)
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
|
|
|
3 |
from PIL import Image
|
4 |
|
5 |
import json
|
6 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
|
|
|
|
|
|
7 |
import pickle
|
8 |
+
import pandas as pd
|
|
|
9 |
|
10 |
############
|
11 |
## Main page
|
|
|
35 |
('multi-qa-MiniLM-L6-cos-v1','null','null'))
|
36 |
|
37 |
option2 = st.sidebar.selectbox(
|
38 |
+
'Which cross-encoder model would you like to be selected?',
|
39 |
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
|
40 |
|
41 |
st.sidebar.success("Load Successfully!")
|
|
|
44 |
# print("Warning: No GPU found. Please add GPU to your notebook")
|
45 |
|
46 |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
47 |
+
@st.cache_resource
|
48 |
+
def load_encoders(sentence_enc, cross_enc):
|
49 |
+
return SentenceTransformer(sentence_enc,device='cpu'), CrossEncoder(cross_enc,device='cpu')
|
50 |
+
bi_encoder, cross_encoder = load_encoders(option1,option2)
|
51 |
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
|
52 |
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
|
53 |
|
|
|
|
|
|
|
54 |
passages = []
|
55 |
|
56 |
# load pre-train embeedings files
|
57 |
+
@st.cache_resource
|
58 |
+
def load_pickle(path):
|
59 |
+
with open(path, "rb") as fIn:
|
60 |
+
cache_data = pickle.load(fIn)
|
61 |
+
passages = cache_data['sentences']
|
62 |
+
corpus_embeddings = cache_data['embeddings']
|
63 |
+
print("Load pre-computed embeddings from disc")
|
64 |
+
return passages,corpus_embeddings
|
65 |
+
|
66 |
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
|
67 |
+
passages,corpus_embeddings = load_pickle(embedding_cache_path)
|
68 |
+
|
|
|
|
|
|
|
69 |
|
70 |
from rank_bm25 import BM25Okapi
|
71 |
from sklearn.feature_extraction import _stop_words
|
|
|
76 |
|
77 |
import yake
|
78 |
|
79 |
+
@st.cache_resource
|
80 |
+
def load_model():
|
81 |
+
language = "en"
|
82 |
+
max_ngram_size = 3
|
83 |
+
deduplication_threshold = 0.9
|
84 |
+
deduplication_algo = 'seqm'
|
85 |
+
windowSize = 3
|
86 |
+
numOfKeywords = 3
|
87 |
+
return yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
|
88 |
+
custom_kw_extractor = load_model()
|
89 |
+
# load query GMS information
|
90 |
+
@st.cache_resource
|
91 |
+
def load_json(path):
|
92 |
+
with open(path, 'r') as file:
|
93 |
+
query_gms_dict = json.load(file)
|
94 |
+
return query_gms_dict
|
95 |
+
|
96 |
+
query_gms_dict = load_json('query_gms.json')
|
97 |
# We lower case our text and remove stop-words from indexing
|
98 |
def bm25_tokenizer(text):
|
99 |
tokenized_doc = []
|
|
|
104 |
tokenized_doc.append(token)
|
105 |
return tokenized_doc
|
106 |
|
107 |
+
@st.cache_resource
|
108 |
+
def get_tokenized_corpus(passages,_tokenizer):
|
109 |
+
tokenized_corpus = []
|
110 |
+
for passage in passages:
|
111 |
+
tokenized_corpus.append(_tokenizer(passage))
|
112 |
+
return tokenized_corpus
|
113 |
|
114 |
+
tokenized_corpus = get_tokenized_corpus(passages,bm25_tokenizer)
|
115 |
bm25 = BM25Okapi(tokenized_corpus)
|
116 |
|
117 |
def word_len(s):
|
|
|
120 |
|
121 |
# This function will search all wikipedia articles for passages that
|
122 |
# answer the query
|
123 |
+
DEFAULT_SCORE = -100.0
|
124 |
+
def clean_string(input_string):
|
125 |
+
string_sub1 = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', input_string)
|
126 |
+
string_sub2 = re.sub("\x20\x20", "\n", string_sub1)
|
127 |
+
string_strip = string_sub2.strip().lower()
|
128 |
+
output_string = []
|
129 |
+
if len(string_strip) > 20:
|
130 |
+
keywords = custom_kw_extractor.extract_keywords(string_strip)
|
131 |
+
for tokens in keywords:
|
132 |
+
string_clean = tokens[0]
|
133 |
+
if word_len(string_clean) > 1:
|
134 |
+
output_string.append(string_clean)
|
135 |
+
else:
|
136 |
+
output_string.append(string_strip)
|
137 |
+
return output_string
|
138 |
+
|
139 |
+
# def add_gms_score_for_candidates(candidates, query_gms_dict):
|
140 |
+
# for query_candidate in candidates:
|
141 |
+
# value = candidates[query_candidate]
|
142 |
+
# value['gms'] = query_gms_dict.get(query_candidate, 0)
|
143 |
+
# candidates[query_candidate] = value
|
144 |
+
# return candidates
|
145 |
+
|
146 |
+
def generate_query_expansion_candidates(query):
|
147 |
print("Input query:", query)
|
148 |
+
expanded_query_set = {}
|
149 |
|
150 |
##### BM25 search (lexical search) #####
|
151 |
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
152 |
+
# finds the indices of the top n scores
|
153 |
+
top_n_indices = np.argpartition(bm25_scores, -5)[-5:]
|
154 |
+
bm25_hits = [{'corpus_id': idx, 'bm25_score': bm25_scores[idx]} for idx in top_n_indices]
|
155 |
+
# bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
##### Sematic Search #####
|
159 |
# Encode the query using the bi-encoder and find potentially relevant passages
|
160 |
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
161 |
+
# query_embedding = query_embedding.cuda()
|
162 |
+
# Get the hits for the first query
|
163 |
+
encoder_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
|
164 |
|
165 |
+
# For all retrieved passages, add the cross_encoder scores
|
166 |
+
cross_inp = [[query, passages[hit['corpus_id']]] for hit in encoder_hits]
|
|
|
167 |
cross_scores = cross_encoder.predict(cross_inp)
|
|
|
|
|
168 |
for idx in range(len(cross_scores)):
|
169 |
+
encoder_hits[idx]['cross_score'] = cross_scores[idx]
|
170 |
+
|
171 |
+
candidates = {}
|
172 |
+
for hit in bm25_hits:
|
173 |
+
corpus_id = hit['corpus_id']
|
174 |
+
if corpus_id not in candidates:
|
175 |
+
candidates[corpus_id] = {'bm25_score': hit['bm25_score'], 'bi_score': DEFAULT_SCORE, 'cross_score': DEFAULT_SCORE}
|
176 |
+
for hit in encoder_hits:
|
177 |
+
corpus_id = hit['corpus_id']
|
178 |
+
if corpus_id not in candidates:
|
179 |
+
candidates[corpus_id] = {'bm25_score': DEFAULT_SCORE, 'bi_score': hit['score'], 'cross_score': hit['cross_score']}
|
180 |
+
else:
|
181 |
+
bm25_score = candidates[corpus_id]['bm25_score']
|
182 |
+
candidates[corpus_id].update({'bm25_score': bm25_score, 'bi_score': hit['score'], 'cross_score': hit['cross_score']})
|
183 |
+
|
184 |
+
final_candidates = {}
|
185 |
+
for key, value in candidates.items():
|
186 |
+
input_string = passages[key].replace("\n", "")
|
187 |
+
string_set = set(clean_string(input_string))
|
188 |
+
for item in string_set:
|
189 |
+
final_candidates[item.replace("\n", " ")] = value
|
190 |
+
# remove the query itself from candidates
|
191 |
+
if query in final_candidates:
|
192 |
+
del final_candidates[query]
|
193 |
+
# print(final_candidates)
|
194 |
+
# add gms column
|
195 |
+
df = pd.DataFrame(final_candidates).T
|
196 |
+
df['gms'] = [query_gms_dict.get(i,0) for i in df.index]
|
197 |
# Total Results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
return df.to_dict('index')
|
200 |
+
|
201 |
+
def re_rank_candidates(query, candidates, method):
|
202 |
+
if method == 'bm25':
|
203 |
+
# Filter and sort by bm25_score
|
204 |
+
filtered_sorted_result = sorted(
|
205 |
+
[(k, v) for k, v in candidates.items() if v['bm25_score'] > DEFAULT_SCORE],
|
206 |
+
key=lambda x: x[1]['bm25_score'],
|
207 |
+
reverse=True
|
208 |
+
)
|
209 |
+
elif method == 'bi_encoder':
|
210 |
+
# Filter and sort by bi_score
|
211 |
+
filtered_sorted_result = sorted(
|
212 |
+
[(k, v) for k, v in candidates.items() if v['bi_score'] > DEFAULT_SCORE],
|
213 |
+
key=lambda x: x[1]['bi_score'],
|
214 |
+
reverse=True
|
215 |
+
)
|
216 |
+
elif method == 'cross_encoder':
|
217 |
+
# Filter and sort by cross_score
|
218 |
+
filtered_sorted_result = sorted(
|
219 |
+
[(k, v) for k, v in candidates.items() if v['cross_score'] > DEFAULT_SCORE],
|
220 |
+
key=lambda x: x[1]['cross_score'],
|
221 |
+
reverse=True
|
222 |
+
)
|
223 |
+
elif method == 'gms':
|
224 |
+
filtered_sorted_by_encoder = sorted(
|
225 |
+
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
|
226 |
+
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
|
227 |
+
reverse=True
|
228 |
+
)
|
229 |
+
# first sort by cross_score + bi_score
|
230 |
+
filtered_sorted_result = sorted(filtered_sorted_by_encoder, key=lambda x: x[1]['gms'], reverse=True
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
# use default method cross_score + bi_score
|
234 |
+
# Filter and sort by cross_score + bi_score
|
235 |
+
filtered_sorted_result = sorted(
|
236 |
+
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
|
237 |
+
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
|
238 |
+
reverse=True
|
239 |
+
)
|
240 |
+
data_dicts = [{'query': item[0], **item[1]} for item in filtered_sorted_result]
|
241 |
+
# Convert the list of dictionaries into a DataFrame
|
242 |
+
df = pd.DataFrame(data_dicts)
|
243 |
+
return df
|
244 |
+
|
245 |
+
|
246 |
+
# st.write("## Raw Candidates:")
|
247 |
+
if st.button('Generated Expansion'):
|
248 |
+
col1, col2 = st.columns(2)
|
249 |
+
candidates = generate_query_expansion_candidates(query = user_query)
|
250 |
+
|
251 |
+
with col1:
|
252 |
+
st.subheader('Original Ranking')
|
253 |
+
ranking_cross = re_rank_candidates(user_query, candidates, method='cross_encoder')
|
254 |
+
ranking_cross.index = ranking_cross.index+1
|
255 |
+
st.table(ranking_cross['query'][:maxtags_sidebar])
|
256 |
+
|
257 |
+
with col2:
|
258 |
+
st.subheader('GMS-sorted Ranking')
|
259 |
+
ranking_gms = re_rank_candidates(user_query, candidates, method='gms')
|
260 |
+
ranking_gms.index = ranking_gms.index + 1
|
261 |
+
st.table(ranking_gms[['query', 'gms']][:maxtags_sidebar])
|
262 |
+
|
263 |
+
## convert into dataframe
|
264 |
+
# data_dicts = [{'query': key, **values} for key, values in candidates.items()]
|
265 |
+
# df = pd.DataFrame(data_dicts)
|
266 |
+
# st.write(list(candidates.keys())[0:maxtags_sidebar])
|
267 |
+
# st.write(df)
|
268 |
+
# st.dataframe(df)
|
269 |
+
# st.success(raw_candidates)
|
270 |
+
|
271 |
+
#if st.button('Rerank By GMS'):
|
272 |
+
#candidates = generate_query_expansion_candidates(query = user_query)
|
273 |
+
#df = re_rank_candidates(user_query, candidates, method='gms')
|
274 |
+
#st.dataframe(df[['query', 'gms']][:maxtags_sidebar])
|