File size: 11,305 Bytes
4d6e8c2
3b09640
 
 
ef7a723
3b09640
 
ef7a723
678ffd5
3b09640
4d6e8c2
3b09640
 
 
 
4d6e8c2
 
 
ef7a723
 
1c33274
70f5f26
39afbbb
 
 
 
 
 
 
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a723
 
 
 
 
 
 
 
 
 
1c33274
70f5f26
4d6e8c2
 
39afbbb
4d6e8c2
3b09640
 
 
ef7a723
39afbbb
 
 
 
 
 
 
 
 
 
 
3b09640
 
39afbbb
3b09640
39afbbb
ef7a723
39afbbb
61936a9
 
 
 
39afbbb
f4ec0e7
 
 
 
39afbbb
 
 
 
 
 
 
 
 
ef7a723
39afbbb
 
33584bc
39afbbb
 
 
 
 
 
 
 
 
be5011a
3b09640
 
39afbbb
ef7a723
3b09640
ef7a723
 
39afbbb
3b09640
39afbbb
3b09640
39afbbb
3b09640
39afbbb
3b09640
4d6e8c2
 
3b09640
39afbbb
3b09640
ef7a723
 
3b09640
 
 
 
39afbbb
3b09640
4d6e8c2
 
70f5f26
4d6e8c2
3b09640
39afbbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a723
39afbbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score
import random
import os
from ultralytics import YOLO
from torch.utils.data import DataLoader

from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

# MODEL_TYPE = "YOLOv11n"
DESCRIPTION = "YOLOv11"
ROUTE = "/image"

def collate_fn(batch):
    """Prepare a batch of examples."""
    images = [example["image"] for example in batch]
    annotations = [example["annotations"].strip() for example in batch]
    return images, annotations


def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i+1:i+5]
            boxes.append(box)
    return boxes

def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""
    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width/2
        y1 = y_center - height/2
        x2 = x_center + width/2
        y2 = y_center + height/2
        return np.array([x1, y1, x2, y2])
    
    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)
    
    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection
    
    return intersection / (union + 1e-6)

def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou

def load_model(path_to_model, model_type="YOLO"):
    if model_type == "YOLO":
        model = YOLO(path_to_model)
    else:
        raise NotImplementedError
    return model

def get_boxes_list(predictions):
    return [box.tolist() for box in predictions.boxes.xywhn]

@router.post(ROUTE, tags=["Image Task"],
             description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
    """
    Evaluate image classification and object detection for forest fire smoke using batched inference.
    """
    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]

    # Load YOLO model
    model_path = "best.pt"
    model = YOLO(model_path)
    model.eval()

    # Set up DataLoader for batched processing
    batch_size = 8
    dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)

    # Initialize variables for evaluation
    tracker.start()
    tracker.start_task("inference")

    true_labels = []
    predictions = []
    pred_boxes = []
    true_boxes_list = []
    
    n_examples = len(test_dataset)
    images_processed = 0
    
    for batch_idx, (images, annotations) in enumerate(dataloader):
        batch_size_current = len(images)
        images_processed += batch_size_current

        print(f"Processing batch {batch_idx + 1}: {images_processed}/{n_examples} images")

        # Parse true labels and boxes
        batch_true_labels = []
        batch_true_boxes_list = []
        for annotation in annotations:
            has_smoke = len(annotation) > 0
            batch_true_labels.append(int(has_smoke))
            true_boxes = parse_boxes(annotation) if has_smoke else []
            batch_true_boxes_list.append(true_boxes)
        
        true_labels.extend(batch_true_labels)
        true_boxes_list.extend(batch_true_boxes_list)

        # YOLO batch inference
        batch_predictions = model(images)

        # Parse predictions for smoke detection and bounding boxes
        batch_predictions_classes = [1 if len(pred.boxes) > 0 else 0 for pred in batch_predictions]
        batch_pred_boxes = [get_boxes_list(pred)[0] if len(pred.boxes) > 0 else [0, 0, 0, 0] for pred in batch_predictions]

        predictions.extend(batch_predictions_classes)
        pred_boxes.extend(batch_pred_boxes)

    # Stop tracking emissions
    emissions_data = tracker.stop_task()

    # Calculate classification metrics
    classification_accuracy = accuracy_score(true_labels, predictions)
    classification_precision = precision_score(true_labels, predictions)
    classification_recall = recall_score(true_labels, predictions)

    # Calculate mean IoU for object detection (only for images with smoke)
    ious = [compute_max_iou(true_boxes, pred_box) for true_boxes, pred_box in zip(true_boxes_list, pred_boxes)]
    mean_iou = float(np.mean(ious)) if ious else 0.0

    # Prepare results dictionary
    username, space_url = get_space_info()
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": "YOLOv11",
        "classification_accuracy": float(classification_accuracy),
        "classification_precision": float(classification_precision),
        "classification_recall": float(classification_recall),
        "mean_iou": mean_iou,
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": "/image",
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }

    return results

# async def evaluate_image(request: ImageEvaluationRequest):
#     """
#     Evaluate image classification and object detection for forest fire smoke.
    
#     Current Model: Random Baseline
#     - Makes random predictions for both classification and bounding boxes
#     - Used as a baseline for comparison
    
#     Metrics:
#     - Classification accuracy: Whether an image contains smoke or not
#     - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
#     """
#     # Get space info
#     username, space_url = get_space_info()
    
#     # Load and prepare the dataset
#     dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    
#     # Split dataset
#     train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
#     test_dataset = train_test["test"]
    
#     # Start tracking emissions
#     tracker.start()
#     tracker.start_task("inference")
    
#     #--------------------------------------------------------------------------------------------
#     # YOUR MODEL INFERENCE CODE HERE
#     # Update the code below to replace the random baseline with your model inference
#     #--------------------------------------------------------------------------------------------   
    
    
#     PATH_TO_MODEL = f"best.pt"
#     model = load_model(PATH_TO_MODEL)
    
#     print(f"Model info: {model.info()}")
#     predictions = []
#     true_labels = []
#     pred_boxes = []
#     true_boxes_list = []  # List of lists, each inner list contains boxes for one image
    
#     n_examples = len(test_dataset)
#     for i, example in enumerate(test_dataset):
#         print(f"Running {i+1} of {n_examples}")
#         # Parse true annotation (YOLO format: class_id x_center y_center width height)
#         annotation = example.get("annotations", "").strip()
#         has_smoke = len(annotation) > 0
#         true_labels.append(int(has_smoke))
        
#         model_preds = model(example['image'])[0]
#         pred_has_smoke = len(model_preds) > 0
#         predictions.append(int(pred_has_smoke))
        
#         # If there's a true box, parse it and make random box prediction
#         if has_smoke:
            
#             # Parse all true boxes from the annotation
#             image_true_boxes = parse_boxes(annotation)
#             true_boxes_list.append(image_true_boxes)
            
#             try:
#                 pred_box_list = get_boxes_list(model_preds)[0] # With one bbox to start with (as in the random baseline)
#             except:
#                 print("No boxes found")
#                 pred_box_list = [0, 0, 0, 0] # Hacky way to make sure that compute_max_iou doesn't fail
#             pred_boxes.append(pred_box_list)


    
#     #--------------------------------------------------------------------------------------------
#     # YOUR MODEL INFERENCE STOPS HERE
#     #--------------------------------------------------------------------------------------------   
    
#     # Stop tracking emissions
#     emissions_data = tracker.stop_task()
    
#     # Calculate classification metrics
#     classification_accuracy = accuracy_score(true_labels, predictions)
#     classification_precision = precision_score(true_labels, predictions)
#     classification_recall = recall_score(true_labels, predictions)
    
#     # Calculate mean IoU for object detection (only for images with smoke)
#     # For each image, we compute the max IoU between the predicted box and all true boxes
#     ious = []
#     for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
#         max_iou = compute_max_iou(true_boxes, pred_box)
#         ious.append(max_iou)
    
#     mean_iou = float(np.mean(ious)) if ious else 0.0
    
#     # Prepare results dictionary
#     results = {
#         "username": username,
#         "space_url": space_url,
#         "submission_timestamp": datetime.now().isoformat(),
#         "model_description": DESCRIPTION,
#         "classification_accuracy": float(classification_accuracy),
#         "classification_precision": float(classification_precision),
#         "classification_recall": float(classification_recall),
#         "mean_iou": mean_iou,
#         "energy_consumed_wh": emissions_data.energy_consumed * 1000,
#         "emissions_gco2eq": emissions_data.emissions * 1000,
#         "emissions_data": clean_emissions_data(emissions_data),
#         "api_route": ROUTE,
#         "dataset_config": {
#             "dataset_name": request.dataset_name,
#             "test_size": request.test_size,
#             "test_seed": request.test_seed
#         }
#     }
    
#     return results