File size: 12,151 Bytes
dc07399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from doctest import DocFileCase
from tqdm import tqdm
import numpy as np
import torch
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
from sklearn.utils import shuffle
import random
import datetime as dt
import os
from glob import glob
from spacy.lang.en import English
import inspect

def checkpoint_save(model, val_loss, checkpoint_dir=None, wandb_name=None):
    if checkpoint_dir is None:
        checkpoint_dir = './save_model'
    if not os.path.isdir(checkpoint_dir):
        os.mkdir(checkpoint_dir)
    x = dt.datetime.now()
    y = x.year
    m = x.month
    d = x.day
    
    if wandb_name is None:
        wandb_name = "testing"
    
    torch.save(model.state_dict(), "./save_model/{}_{}_{}_{:.4f}_{}.pt".format(y, m, d, val_loss, wandb_name))
    
    #saved_dict_list = glob(os.path.join(checkpoint_dir, '*.pt'))
    saved_dict_list = glob(os.path.join(checkpoint_dir, '{}_{}_{}_*_{}.pt'.format(y,m,d,wandb_name)))
    
    
    val_loss_list = np.array([float(os.path.basename(loss).split("_")[3]) for loss in saved_dict_list])
    saved_dict_list.pop(val_loss_list.argmax())
    
    for i in saved_dict_list:
        os.remove(i)


def set_seed(seed):
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)

def accuracy_per_class(preds, labels):
    label_dict = {'Abstract':0, 'Intro':1, 'Main':2, 'Method':3, 'Summary':4, 'Caption':5}
    label_dict_inverse = {v: k for k, v in label_dict.items()}
    
    class_list = []
    acc_list = []
    for label in list(label_dict.values()):
        y_preds = preds[labels==label]
        y_true = labels[labels==label]
        class_list.append(label_dict_inverse[label])
        acc_list.append("{0}/{1}".format(len(y_preds[y_preds==label]), len(y_true)))
    
    print("{:10} {:10} {:10} {:10} {:10} {:10}".format(class_list[0], class_list[1], class_list[2], class_list[3], class_list[4], class_list[5]))
    print("{:10} {:10} {:10} {:10} {:10} {:10}".format(acc_list[0], acc_list[1], acc_list[2], acc_list[3], acc_list[4], acc_list[5]))    


def compute_metrics(output, target, task_type='onehot'):
    if task_type=='onehot':
        pred=np.argmax(output, axis=1).flatten()
        labels=np.argmax(target, axis=1).flatten()
    elif task_type=='scalar':
        pred=np.argmax(output, axis=1).flatten()
        labels=np.array(target).flatten()
    accuracy = accuracy_score(y_true=labels, y_pred=pred)
    recall = recall_score(y_true=labels, y_pred=pred, average='macro')
    precision = precision_score(y_true=labels, y_pred=pred, average='macro', zero_division=0)
    f1 = f1_score(y_true=labels, y_pred=pred, average='macro')
    
    accuracy_per_class(pred, labels)
        
    return [accuracy, precision, recall, f1]

def input_check(input_dict, model):
    model_inputs = inspect.signature(model.forward).parameters.keys()
    inputs = {}
    for key, val in input_dict.items():
        if key in model_inputs:
            inputs[key] = val
    return inputs
    
    

def model_eval(model, device, loader, task_type='onehot', return_values=False, sentence_piece=False):
    model.eval()
    error = 0
    accuracy = 0
    precision = 0
    recall = 0
    f1 = 0
    eval_targets=[]
    eval_outputs=[]
    eval_texts=[]
    with torch.no_grad():
        for data in tqdm(loader):
            eval_texts.extend(data['text'])
            input_ids=data['input_ids'].to(device, dtype=torch.long)
            mask = data['attention_mask'].to(device, dtype=torch.long)
            token_type_ids = data['token_type_ids'].to(device, dtype=torch.long)
            if task_type=='onehot':
                targets=data['label_onehot'].to(device, dtype=torch.float)
            elif task_type=='scalar':
                targets=data['label'].to(device, dtype=torch.long)
            position = data['position']
            inputs = {'input_ids': input_ids, 'attention_mask': mask, 'token_type_ids': token_type_ids, 
          'labels': targets, 'position': position}
            if sentence_piece:
                sentence_batch = data['sentence_batch'].to(device, dtype=torch.long)
                inputs = {'input_ids': input_ids, 'attention_mask': mask, 'token_type_ids': token_type_ids, 
          'labels': targets, 'sentence_batch': sentence_batch, 'position': position}
            outputs = model(inputs) 
            output = outputs[1]
            loss = outputs[0]
            #loss=loss_fn(output, targets)
            error+=loss
            #output = torch.sigmoid(output)
            eval_targets.extend(targets.detach().cpu().numpy())
            eval_outputs.extend(output.detach().cpu().numpy())
            
    error = error / len(loader)
    accuracy, precision, recall, f1 = compute_metrics(eval_outputs, eval_targets, task_type=task_type)
    
    if return_values:
        return [error, accuracy, precision, recall, f1, eval_targets, eval_outputs, eval_texts]
    else:
        return [error, accuracy, precision, recall, f1]
    
    
def get_hidden(model, device, loader, task_type='onehot', sentence_piece=False):
    model.eval()
    total_hidden_state = []
    total_targets=[]
    with torch.no_grad():
        for data in tqdm(loader):
            input_ids=data['input_ids'].to(device, dtype=torch.long)
            mask = data['attention_mask'].to(device, dtype=torch.long)
            token_type_ids = data['token_type_ids'].to(device, dtype=torch.long)
            if task_type=='onehot':
                targets=data['label_onehot'].to(device, dtype=torch.float)
            elif task_type=='scalar':
                targets=data['label'].to(device, dtype=torch.long)
            position = data['position']
            inputs = {'input_ids': input_ids, 'attention_mask': mask, 'token_type_ids': token_type_ids, 
          'labels': targets, 'position': position}
            if sentence_piece:
                sentence_batch = data['sentence_batch'].to(device, dtype=torch.long)
                inputs = {'input_ids': input_ids, 'attention_mask': mask, 'token_type_ids': token_type_ids, 
          'labels': targets, 'sentence_batch': sentence_batch, 'position': position}
            outputs = model(inputs) 
            hidden_state = outputs[2]
            total_hidden_state.extend(hidden_state.detach().cpu().numpy())
            total_targets.extend(targets.detach().cpu().numpy())
    return total_hidden_state, total_targets
            


def sentencepiece(paragraph_list, spacy_nlp, tokenizer, max_length=512):
    # ํ˜„์žฌ token type ids๊ฐ€ tokenizer์—์„œ ์ƒ์„ฑํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์•„๋‹Œ ๋‚ด๊ฐ€ ์ž„์˜์ ์œผ๋กœ 0, 1๋กœ๋งŒ ๋„ฃ๋„๋ก ํ•ด๋†“์•˜์Œ, XLNET ๊ฐ™์€๊ฑด CLS๊ฐ€ 2๋กœ ๋˜๋Š” ๊ฒฝ์šฐ ๊ฐ™์ด ์ด ๊ทœ์น™์„ ๋ฒ—์–ด๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์–ด์„œ ๋‚˜์ค‘์— ๋ฌธ์ œ๋˜๋ฉด ์ˆ˜์ • ํ•„์š”
    encode_datas = {'input_ids': [], 'token_type_ids': [], 'attention_mask': [], 'sentence_batch': []}
    for paragraph in paragraph_list:
        doc = spacy_nlp(paragraph)
        sentence_encode = [sent.text for sent in doc.sents]
        sentence_encode = tokenizer.batch_encode_plus(sentence_encode, max_length=max_length, padding='max_length', return_attention_mask=True, return_token_type_ids=True)

        sentence_list = sentence_encode['input_ids']
        mask_list = sentence_encode['attention_mask']
        pad_token = None
        pad_position = None
        total_sentence = torch.tensor([], dtype=torch.int)
        token_type_ids = []
        s_batch = []
        
        for n, s in enumerate(sentence_list):
            if pad_token is None:
                pad_token = s[mask_list[n].index(0)]
            if pad_position is None:
                if s[0] == pad_token:
                    pad_position = 'start'
                else:
                    pad_position = 'end'

            s=torch.tensor(s, dtype=torch.int)
            s = s[s!=pad_token]
            total_length = len(total_sentence) + len(s)
            if total_length > max_length:
                break
            total_sentence = torch.concat([total_sentence, s])
            token_type_ids = token_type_ids + [n%2]*len(s)
            s_batch = s_batch + [n]*len(s)
            
        total_sentence = total_sentence.tolist()
        pad_length = max_length - len(total_sentence)
        attention_mask = [1]*len(total_sentence)
        if pad_position == 'end':
            total_sentence = total_sentence + [pad_token]*pad_length
            attention_mask = attention_mask + [0]*pad_length
            s_batch = s_batch + [max(s_batch)+1]*pad_length
            if n%2 == 0:
                token_type_ids = token_type_ids + [1]*pad_length
            else:
                token_type_ids = token_type_ids + [0]*pad_length

        elif pad_position == 'start':
            total_sentence = [pad_token]*pad_length + total_sentence
            attention_mask = [0]*pad_length + attention_mask
            s_batch = [max(s_batch)+1]*pad_length + s_batch
            if n%2 == 0:
                token_type_ids = [0]*pad_length + token_type_ids
            else:
                token_type_ids = [1]*pad_length + token_type_ids

        encode_datas['input_ids'].append(total_sentence)
        encode_datas['token_type_ids'].append(token_type_ids)
        encode_datas['attention_mask'].append(attention_mask)
        encode_datas['sentence_batch'].append(s_batch)
    
    return encode_datas
    
    
class EarlyStopping:
    """์ฃผ์–ด์ง„ patience ์ดํ›„๋กœ validation loss๊ฐ€ ๊ฐœ์„ ๋˜์ง€ ์•Š์œผ๋ฉด ํ•™์Šต์„ ์กฐ๊ธฐ ์ค‘์ง€"""
    def __init__(self, patience=7, verbose=False, delta=0):
        """
        Args:
            patience (int): validation loss๊ฐ€ ๊ฐœ์„ ๋œ ํ›„ ๊ธฐ๋‹ค๋ฆฌ๋Š” ๊ธฐ๊ฐ„
                            Default: 7
            verbose (bool): True์ผ ๊ฒฝ์šฐ ๊ฐ validation loss์˜ ๊ฐœ์„  ์‚ฌํ•ญ ๋ฉ”์„ธ์ง€ ์ถœ๋ ฅ
                            Default: False
            delta (float): ๊ฐœ์„ ๋˜์—ˆ๋‹ค๊ณ  ์ธ์ •๋˜๋Š” monitered quantity์˜ ์ตœ์†Œ ๋ณ€ํ™”
                            Default: 0
        """
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.f1_score_max = 0.
        self.delta = delta

    def __call__(self, f1_score):

        score = -f1_score

        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(f1_score)
        elif score > self.best_score + self.delta:
            self.counter += 1
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(f1_score)
            self.counter = 0

    def save_checkpoint(self, f1_score):
        '''validation loss๊ฐ€ ๊ฐ์†Œํ•˜๋ฉด ๊ฐ์†Œ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค.'''
        if self.verbose:
            print(f'F1 score increase ({self.f1_score_max:.6f} --> {f1_score:.6f}). ')
        self.f1_score_max = f1_score


def model_freeze(model, freeze_layers=None):
    if freeze_layers == 0:
        return model
    
    if freeze_layers is not None:
        for param in model.pretrained_model.base_model.word_embedding.parameters():
            param.requires_grad = False

        if freeze_layers != -1:
            # if freeze_layer_count == -1, we only freeze the embedding layer
            # otherwise we freeze the first `freeze_layer_count` encoder layers
            for layer in model.pretrained_model.base_model.layer[:freeze_layers]:
                for param in layer.parameters():
                    param.requires_grad = False                 
    return model

def pos_encoding(pos, d, n=10000):
    encoding_list = []
    for p in pos:
        P = np.zeros(d)
        for i in np.arange(int(d/2)):
            denominator = np.power(n, 2*i/d)
            P[2*i] = np.sin(p/denominator)
            P[2*i+1] = np.cos(p/denominator)
        encoding_list.append(P)
    return torch.tensor(np.array(encoding_list))