File size: 1,653 Bytes
dc07399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import umap

def dim_reduction(target_embeddings, umap_dim=2, n_neighbors=15, min_dist=0.1):
    """
    Dimension reduction using UMAP.
    """
    reducer = umap.UMAP(n_neighbors=n_neighbors, n_components=umap_dim, min_dist=min_dist, metric='cosine', random_state=500)
    embeddings = reducer.fit_transform(target_embeddings)
    return embeddings


def clustering_plot(target_label, embeddings, label_trues, model_preds=None, umap_dim=2, n_neighbors=15, min_dist=0.1):
    """
    Plot the clustering results.
    """
    label_dict = {0:'Abstract', 1:'Introduction', 2:'Main', 3:'Methods', 4:'Summary', 5:'Captions'}
    
    target_index = np.where(label_trues == target_label)[0]
    
    trues = label_trues[target_index]
    embeddings = embeddings[target_index]
    
    embeddings = dim_reduction(embeddings, umap_dim=umap_dim, n_neighbors=n_neighbors, min_dist=min_dist)
    
    df = pd.DataFrame(embeddings, columns=['x', 'y'])
    df['true'] = trues
    df['true'] = df['true'].map(label_dict)
    if model_preds is not None:
        df['pred'] = model_preds[target_index]
        df['pred'] = df['pred'].map(label_dict)
        
    sns.scatterplot(x='x', y='y', hue='true', data=df, palette='Set2')
    plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
    plt.show()
    
    if model_preds is not None:
        sns.scatterplot(x='x', y='y', hue='pred', data=df, palette='Set2')
        plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
        plt.show()
        
    return df