File size: 10,611 Bytes
796529d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee714e
796529d
 
4ee714e
796529d
 
4ee714e
796529d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee714e
796529d
 
4ee714e
796529d
4ee714e
796529d
4ee714e
 
 
 
 
 
796529d
4ee714e
 
 
 
 
 
796529d
4ee714e
 
 
 
 
796529d
 
4ee714e
 
 
 
 
796529d
 
4ee714e
 
 
 
 
796529d
 
4ee714e
796529d
 
 
 
4ee714e
796529d
4ee714e
796529d
 
4ee714e
796529d
 
 
4ee714e
796529d
4ee714e
 
 
 
 
 
796529d
4ee714e
 
 
 
 
796529d
 
4ee714e
 
 
 
 
796529d
 
4ee714e
 
 
 
 
796529d
 
 
4ee714e
 
 
 
 
796529d
 
 
 
 
 
 
b37c413
796529d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from text.symbols import symbols
from text.cleaner import clean_text
from text import cleaned_text_to_sequence, get_bert
from modelscope import snapshot_download
from models import SynthesizerTrn
from tqdm import tqdm
import gradio as gr
import numpy as np
import commons
import random
import utils
import torch
import sys
import re
import os

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
net_g = None
debug = False


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2

        word2ph[0] += 1

    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph
    assert bert.shape[-1] == len(phone)
    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio


def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    with torch.no_grad():
        audio = infer(
            text,
            sdp_ratio=sdp_ratio,
            noise_scale=noise_scale,
            noise_scale_w=noise_scale_w,
            length_scale=length_scale,
            sid=speaker,
        )

    return (hps.data.sampling_rate, audio)


def text_splitter(text: str):
    punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]"
    sentences = re.split(punctuation, text.strip())
    return [sentence.strip() for sentence in sentences if sentence.strip()]


def concatenate_audios(audio_samples, sample_rate=44100):
    half_second_silence = np.zeros(int(sample_rate / 2))
    final_audio = audio_samples[0]
    for sample in audio_samples[1:]:
        final_audio = np.concatenate((final_audio, half_second_silence, sample))

    print("Audio pieces concatenated!")
    return (sample_rate, final_audio)


def read_text(file_path: str):
    try:
        with open(file_path, "r", encoding="utf-8") as file:
            content = file.read()
            return content

    except FileNotFoundError:
        print(f"File Not Found: {file_path}")

    except IOError:
        print(f"An error occurred reading the file: {file_path}")

    except Exception as e:
        print(f"An unknown error has occurred: {e}")


def infer_tab1(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    try:
        content = read_text(text)
        sentences = text_splitter(content)
        audios = []
        for sentence in tqdm(sentences, desc="TTS inferring..."):
            with torch.no_grad():
                audios.append(
                    infer(
                        sentence,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                        sid=speaker,
                    )
                )

        return concatenate_audios(audios, hps.data.sampling_rate), content

    except Exception as e:
        return None, f"{e}"


def infer_tab2(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    try:
        sentences = text_splitter(content)
        audios = []
        for sentence in tqdm(sentences, desc="TTS inferring..."):
            with torch.no_grad():
                audios.append(
                    infer(
                        sentence,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                        sid=speaker,
                    )
                )

        return concatenate_audios(audios, hps.data.sampling_rate)

    except Exception as e:
        print(f"{e}")
        return None


if __name__ == "__main__":
    model_dir = snapshot_download("Genius-Society/hoyoTTS", cache_dir="./__pycache__")
    if debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)

    hps = utils.get_hparams_from_dir(model_dir)
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    net_g.eval()
    utils.load_checkpoint(f"{model_dir}/G_78000.pth", net_g, None, skip_optimizer=True)
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    random.shuffle(speakers)
    with gr.Blocks() as app:
        gr.Markdown(
            """
Welcome to the Space, which is based on the open source project <a href="https://github.com/fishaudio/Bert-VITS2">Bert-vits2</a>, and moved to the bottom for an explanation of the principle. This Space must be used in accordance with local laws and regulations, prohibiting the use of it for any criminal activities."""
        )

        with gr.Tab("Input Mode"):
            gr.Interface(
                fn=infer_tab2,
                inputs=[
                    gr.TextArea(
                        label="Please input the Simplified Chinese text",
                        placeholder="The first inference takes time to download the model, so be patient.",
                        show_copy_button=True,
                    ),
                    gr.Dropdown(choices=speakers, value="莱依拉", label="Role"),
                    gr.Slider(
                        minimum=0,
                        maximum=1,
                        value=0.2,
                        step=0.1,
                        label="Modulation of intonation",
                    ),  # SDP/DP Mix Ratio
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.6,
                        step=0.1,
                        label="Emotional adjustment",
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.8,
                        step=0.1,
                        label="Phoneme length",
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=1,
                        step=0.1,
                        label="Output duration",
                    ),
                ],
                outputs=gr.Audio(label="Output Audio"),
                flagging_mode="never",
                concurrency_limit=4,
            )

        with gr.Tab("Upload Mode"):
            gr.Interface(
                fn=infer_tab1,  # Use text_to_speech func
                inputs=[
                    gr.components.File(
                        label="Please upload a simplified Chinese TXT",
                        type="filepath",
                        file_types=[".txt"],
                    ),
                    gr.Dropdown(choices=speakers, value="莱依拉", label="Role"),
                    gr.Slider(
                        minimum=0,
                        maximum=1,
                        value=0.2,
                        step=0.1,
                        label="Modulation of intonation",
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.6,
                        step=0.1,
                        label="Emotional adjustment",
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=0.8,
                        step=0.1,
                        label="Phoneme length",
                    ),
                    gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=1,
                        step=0.1,
                        label="Output duration",
                    ),
                ],
                outputs=[
                    gr.Audio(label="Output Audio"),
                    gr.TextArea(
                        label="Result of TXT extraction",
                        show_copy_button=True,
                    ),
                ],
                flagging_mode="never",
                concurrency_limit=4,
            )

        gr.HTML(
            """
<iframe src="//player.bilibili.com/player.html?bvid=BV1hergYRENX&p=2&autoplay=0" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" width="100%" style="aspect-ratio: 16 / 9;">
</iframe>
"""
        )

    app.launch()