Spaces:
Running
Running
File size: 10,611 Bytes
796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d 4ee714e 796529d b37c413 796529d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
from text.symbols import symbols
from text.cleaner import clean_text
from text import cleaned_text_to_sequence, get_bert
from modelscope import snapshot_download
from models import SynthesizerTrn
from tqdm import tqdm
import gradio as gr
import numpy as np
import commons
import random
import utils
import torch
import sys
import re
import os
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
net_g = None
debug = False
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
return (hps.data.sampling_rate, audio)
def text_splitter(text: str):
punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]"
sentences = re.split(punctuation, text.strip())
return [sentence.strip() for sentence in sentences if sentence.strip()]
def concatenate_audios(audio_samples, sample_rate=44100):
half_second_silence = np.zeros(int(sample_rate / 2))
final_audio = audio_samples[0]
for sample in audio_samples[1:]:
final_audio = np.concatenate((final_audio, half_second_silence, sample))
print("Audio pieces concatenated!")
return (sample_rate, final_audio)
def read_text(file_path: str):
try:
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except FileNotFoundError:
print(f"File Not Found: {file_path}")
except IOError:
print(f"An error occurred reading the file: {file_path}")
except Exception as e:
print(f"An unknown error has occurred: {e}")
def infer_tab1(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
try:
content = read_text(text)
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS inferring..."):
with torch.no_grad():
audios.append(
infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
return concatenate_audios(audios, hps.data.sampling_rate), content
except Exception as e:
return None, f"{e}"
def infer_tab2(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
try:
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS inferring..."):
with torch.no_grad():
audios.append(
infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
return concatenate_audios(audios, hps.data.sampling_rate)
except Exception as e:
print(f"{e}")
return None
if __name__ == "__main__":
model_dir = snapshot_download("Genius-Society/hoyoTTS", cache_dir="./__pycache__")
if debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_dir(model_dir)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
net_g.eval()
utils.load_checkpoint(f"{model_dir}/G_78000.pth", net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
random.shuffle(speakers)
with gr.Blocks() as app:
gr.Markdown(
"""
Welcome to the Space, which is based on the open source project <a href="https://github.com/fishaudio/Bert-VITS2">Bert-vits2</a>, and moved to the bottom for an explanation of the principle. This Space must be used in accordance with local laws and regulations, prohibiting the use of it for any criminal activities."""
)
with gr.Tab("Input Mode"):
gr.Interface(
fn=infer_tab2,
inputs=[
gr.TextArea(
label="Please input the Simplified Chinese text",
placeholder="The first inference takes time to download the model, so be patient.",
show_copy_button=True,
),
gr.Dropdown(choices=speakers, value="莱依拉", label="Role"),
gr.Slider(
minimum=0,
maximum=1,
value=0.2,
step=0.1,
label="Modulation of intonation",
), # SDP/DP Mix Ratio
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label="Emotional adjustment",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label="Phoneme length",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=1,
step=0.1,
label="Output duration",
),
],
outputs=gr.Audio(label="Output Audio"),
flagging_mode="never",
concurrency_limit=4,
)
with gr.Tab("Upload Mode"):
gr.Interface(
fn=infer_tab1, # Use text_to_speech func
inputs=[
gr.components.File(
label="Please upload a simplified Chinese TXT",
type="filepath",
file_types=[".txt"],
),
gr.Dropdown(choices=speakers, value="莱依拉", label="Role"),
gr.Slider(
minimum=0,
maximum=1,
value=0.2,
step=0.1,
label="Modulation of intonation",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label="Emotional adjustment",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label="Phoneme length",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=1,
step=0.1,
label="Output duration",
),
],
outputs=[
gr.Audio(label="Output Audio"),
gr.TextArea(
label="Result of TXT extraction",
show_copy_button=True,
),
],
flagging_mode="never",
concurrency_limit=4,
)
gr.HTML(
"""
<iframe src="//player.bilibili.com/player.html?bvid=BV1hergYRENX&p=2&autoplay=0" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" width="100%" style="aspect-ratio: 16 / 9;">
</iframe>
"""
)
app.launch()
|