import torch import gradio as gr from threading import Thread from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 16000 DESCRIPTION = f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment" def predict( message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p, ): # Format history with a given chat template stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"] instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n" for user, assistant in history: instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n" instruction += f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n" try: if device == torch.device("cpu"): raise EnvironmentError( "If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment" ) streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True, ) enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) input_ids, attention_mask = enc.input_ids, enc.attention_mask if input_ids.shape[1] > CONTEXT_LENGTH: input_ids = input_ids[:, -CONTEXT_LENGTH:] attention_mask = attention_mask[:, -CONTEXT_LENGTH:] generate_kwargs = dict( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), streamer=streamer, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, top_k=top_k, repetition_penalty=repetition_penalty, top_p=top_p, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() except Exception as e: streamer = f"{e}" outputs = [] for new_token in streamer: outputs.append(new_token) if new_token in stop_tokens: break yield "".join(outputs) if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device == torch.device("cuda"): tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto") # Create Gradio interface gr.ChatInterface( predict, title=f"{MODEL_NAME} Deployment Instance", description=DESCRIPTION, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), additional_inputs=[ gr.Textbox( "You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt", ), gr.Slider(0, 1, 0.6, label="Temperature"), gr.Slider(0, 32000, 10000, label="Max new tokens"), gr.Slider(1, 80, 40, label="Top K sampling"), gr.Slider(0, 2, 1.1, label="Repetition penalty"), gr.Slider(0, 1, 0.95, label="Top P sampling"), ], ).queue().launch()