Spaces:
Running
Running
import torch | |
import gradio as gr | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
CONTEXT_LENGTH = 16000 | |
DESCRIPTION = f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment" | |
def predict( | |
message, | |
history, | |
system_prompt, | |
temperature, | |
max_new_tokens, | |
top_k, | |
repetition_penalty, | |
top_p, | |
): | |
# Format history with a given chat template | |
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"] | |
instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n" | |
for user, assistant in history: | |
instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n" | |
instruction += f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n" | |
try: | |
if device == torch.device("cpu"): | |
raise EnvironmentError( | |
"If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment" | |
) | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
skip_prompt=True, | |
skip_special_tokens=True, | |
) | |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) | |
input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
if input_ids.shape[1] > CONTEXT_LENGTH: | |
input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
attention_mask = attention_mask[:, -CONTEXT_LENGTH:] | |
generate_kwargs = dict( | |
input_ids=input_ids.to(device), | |
attention_mask=attention_mask.to(device), | |
streamer=streamer, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
except Exception as e: | |
streamer = f"{e}" | |
outputs = [] | |
for new_token in streamer: | |
outputs.append(new_token) | |
if new_token in stop_tokens: | |
break | |
yield "".join(outputs) | |
if __name__ == "__main__": | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if device == torch.device("cuda"): | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto") | |
# Create Gradio interface | |
gr.ChatInterface( | |
predict, | |
title=f"{MODEL_NAME} Deployment Instance", | |
description=DESCRIPTION, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), | |
additional_inputs=[ | |
gr.Textbox( | |
"You are a useful assistant. first recognize user request and then reply carfuly and thinking", | |
label="System prompt", | |
), | |
gr.Slider(0, 1, 0.6, label="Temperature"), | |
gr.Slider(0, 32000, 10000, label="Max new tokens"), | |
gr.Slider(1, 80, 40, label="Top K sampling"), | |
gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
], | |
).queue().launch() | |