File size: 7,919 Bytes
6d10c64
a1bc39d
2bde9e1
4c61fcd
7de20a0
 
 
 
 
4d15dc7
d5be6af
4d15dc7
d5be6af
7de20a0
cab9610
2b64787
 
 
 
e450f6c
7de20a0
a1bc39d
 
 
 
 
 
 
 
 
 
 
 
 
 
8373fbf
9420ba3
 
 
9e8be11
9a92101
9e8be11
 
 
 
5e8714a
9e8be11
4e42957
9e8be11
8373fbf
7f2ec6d
53bd282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e450f6c
53bd282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2ec6d
53bd282
7f2ec6d
53bd282
 
 
 
7f2ec6d
9e8be11
7f2ec6d
 
 
 
 
 
 
3eb58cd
 
b1b3f71
 
 
3fbe817
b1b3f71
9224ffd
b24494c
4ca8440
5bdbc1f
3eb58cd
 
fd71939
b1b3f71
3eb58cd
b56fd2b
3eb58cd
3c56f3a
 
 
 
21d804e
9907d16
9224ffd
 
429953d
 
bee919a
ab3c64e
5b4db95
3c56f3a
9907d16
5b4db95
 
 
 
9224ffd
3223cd0
9224ffd
 
5b4db95
9907d16
5b4db95
 
 
9808a5f
9224ffd
3223cd0
9224ffd
3eb58cd
9907d16
3eb58cd
 
 
919b891
 
 
9224ffd
919b891
9224ffd
919b891
 
 
 
 
 
92d4436
8373fbf
b56fd2b
92d4436
c585a5d
429953d
b56fd2b
9224ffd
919b891
4e42957
9907d16
8cacfad
 
 
 
 
8373fbf
9907d16
4ca8440
 
 
f076e4f
 
92d4436
4ca8440
92d4436
4ca8440
 
 
f076e4f
38098e8
b1b3f71
99c33b8
e5a45fc
 
 
914a779
e5a45fc
 
7f2ec6d
53bd282
 
 
8e7188b
38098e8
 
 
 
 
212ca5f
38098e8
212ca5f
38098e8
 
 
61c7a4c
 
bef2a73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import gradio as gr
from tridentmodel import classification
import pandas as pd
import torch
import torch.nn as nn
import transformers
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig


auth_token = os.environ.get("AUTH_TOKEN_SECRET")

tokenizer = LlamaTokenizer.from_pretrained("Claimed/capybara", use_auth_token=auth_token)

model = LlamaForCausalLM.from_pretrained(
     "Claimed/capybara", use_auth_token=auth_token, 
    load_in_8bit=True,
    device_map="auto") #low_cpu_mem_usage=True)

model = model.to('cuda')


def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def add_file(history, file):
    history = history + [((file.name,), None)]
    return history

def bot(history):
    response = "**That's cool!**"
    history[-1][1] = response
    return history

'''
########## LOADING PRE-COMPUTED EMBEDDINGS ##########
class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')


def classifier(userin, SearchType):
    clean_in = classification.clean_data(userin, type='String')
    in_emb = classification.sentence_embedder(clean_in, 'Model_bert')

    Number = 10
    broad_scope_predictions = classification.broad_scope_class_predictor(class_embeddings, in_emb, Number, Sensitivity='High')

    return broad_scope_predictions[1], searchlink
    
'''

def generateresponse(history, task):
    """
    Model definition here:
    """

    global model
    global tokenizer

    user = history[-1][0]

    PROMPT = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
    ### Instruction:
    {user}
    ### Response:"""

    inputs = tokenizer(
        PROMPT,
        return_tensors="pt",
    ) 
    input_ids = inputs["input_ids"].cuda()

    generation_config = GenerationConfig(
        temperature=0.6,
        top_p=0.95,
        repetition_penalty=1.15,
    ) 
    print("Generating...")
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256,
    ) 
    output = []
    for s in generation_output.sequences:
        outputs.append(tokenizer.decode(s))
        print(tokenizer.decode(s))
    
    output = (outputs[0].split('### Response:'))[1]
    
    response = f"Response: {output}"
    history[-1][1] = response
    print(history)
    return history


theme = gr.themes.Base(
    primary_hue="indigo",
).set(
    prose_text_size='*text_sm'
)

with gr.Blocks(title='Claimed', theme=theme) as demo:

    gr.Markdown("""
    # CLAIMED - A GENERATIVE TOOLKIT FOR PATENT ATTORNEYS

    The patenting process can by incredibly time-consuming and expensive. We're on a mission to change that.
    
    Welcome to our demo! We've trained Meta's Llama on over 200k entries, with a focus on tasks related to the intellectual property domain.

    Please note that this is for research purposes and shouldn't be used commercially. 

    None of the outputs of this model, taken in part or in its entirety, constitutes legal advice. If you are seeking protection for you intellectual property, consult a registered patent/trademark attorney.
    
    """)
    
    with gr.Tab("Claim Drafter"):
        gr.Markdown(""" 
        Use this tool to expand your idea into the technical language of a patent claim.        
        """)
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")
   
    with gr.Tab("Description Generator"):
        gr.Markdown(""" 

        Use this tool to expand your patent claim into a description. You can also use this tool to generate abstracts and give you ideas about the benefit of an invention by changing the settings in the dropdown menu.
 
        """)
        Task = gr.Dropdown(["Generate Description", "Generate Abstract", "Benefits of the invention"], label='Choose Generation Type Here')
        with gr.Row(scale=1, min_width=600):
                    
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")

    with gr.Tab("Knowledge Graph"):
        gr.Markdown(""" 
        Use this tool to generate a knowledge graph of your invention. This will help highlight the links between features. 

        """)
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")

    with gr.Tab("Prosecution Ideator"):
        gr.Markdown(""" 
        Use this tool to generate ideas for how to overcome objections to novelty and inventive step. Outputs are in the problem-solution format. 
        """)
        with gr.Row(scale=1, min_width=600):
            text1 = gr.Textbox(label="Input",
                              placeholder='Type in your idea here!')
            text2 = gr.Textbox(label="Output")

    # with gr.Tab("Claimed Infill"):
    #     gr.Markdown(""" 
    #     Below is our 

    #     Example input: A device to help the visually impaired using proprioception.

    #     Output: 
    #     """)
    #     with gr.Row(scale=1, min_width=600):
    #         text1 = gr.Textbox(label="Input",
    #                           placeholder='Type in your idea here!')
    #         text2 = gr.Textbox(label="Output")

    
    with gr.Tab("CPC Search Tool"):
        gr.Markdown("""
        Use this tool to classify your invention according to the Cooperative Patent Classification system. 

        Click on the link to initiate either an Espacenet or Google Patents classification search using the generated classifications. You can specify which you would like using the dropdown menu. 
        """)

        SearchType = gr.Dropdown(["Google Patent Search", "Espacenet Patent Search"], label='Choose Search Type Here', value='Google Patent Search')        
        with gr.Row(scale=1, min_width=600):
            userin = gr.Textbox(label="Input",
                              placeholder='Type in your Claim/Description/Abstract Here')
            output = gr.Textbox(label="Output")
        with gr.Row():
            classify_btn = gr.Button("Classify")
            #classify_btn.click(fn=classifier, inputs=[userin, SearchType] , outputs=output)


    gr.Markdown(""" 

    # THE CHATBOT

    Do you want a bit more freedom over the outputs you generate? No worries, you can use a chatbot version of our model below. You can ask it anything. 

    If you're concerned about a particular output, hit the flag button and we will use that information to improve the model.


    """)

   
    chatbot = gr.Chatbot([], elem_id="Claimed Assistant").style(height=200)
    with gr.Row():
        with gr.Column(scale=0.85):
            txt = gr.Textbox(
                show_label=False,
                placeholder="Enter text and submit",
            ).style(container=False)
        with gr.Column(scale=0.15, min_width=0):
            btn = gr.Button("Submit")
        
        txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
            generateresponse, chatbot, chatbot)

    gr.Markdown("""
    # HAVE AN IDEA? GET IT CLAIMED 

    In the future, we are looking to expand our model's capabilities further to assist in a range of IP related tasks.

    If you are interested in using a more powerful model that we have trained, or if you have any suggestions of features you would like to see us add, please get in touch!

    As far as data is concerned, you have nothing to worry about! We don't store any of your inputs to use for further training, we're not OpenAI.  
    
    """)



demo.launch()