import gradio as gr import gc, copy, re from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS from huggingface_hub import hf_hub_download ctx_limit = 4096 title = "RWKV-5-World-1B5-v2-20231025-ctx4096" model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}.pth") model = RWKV(model=model_path, strategy="cpu bf16") pipeline = PIPELINE(model, "rwkv_vocab_v20230424") def generate_prompt(instruction, input=None, history=None): # parse the chat history into a string of user and assistant messages history_str = "" has_history = (history is not None) if has_history: for pair in history: if len(pair[0]) > 0 and len(pair[1]) > 0: history_str += f"User: {pair[0]}\n\nAssistant: {pair[1]}\n\n" if instruction: instruction = ( instruction.strip() .replace("\r\n", "\n") .replace("\n\n", "\n") .replace("\n\n", "\n") ) if input: input = ( input.strip() .replace("\r\n", "\n") .replace("\n\n", "\n") .replace("\n\n", "\n") ) if not has_history and len(input) > 0: return f"""{history_str}Instruction: {instruction} Input: {input} Response:""" else: return f"""{history_str}User: {instruction} Assistant:""" examples = [ ["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5], [ "Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.", "", 300, 1.2, 0.5, 0.5, 0.5, ], ["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5], ["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5], [ "Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.5, 0.5, ], [ "Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.5, 0.5, ], [ "You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.5, 0.5, ], ] def generator( instruction, input=None, token_count=333, temperature=1.0, top_p=0.5, presencePenalty=0.5, countPenalty=0.5, history=None ): args = PIPELINE_ARGS( temperature=max(2.0, float(temperature)), top_p=float(top_p), alpha_frequency=countPenalty, alpha_presence=presencePenalty, token_ban=[], # ban the generation of some tokens token_stop=[0], # stop generation whenever you see any token here ) instruction = re.sub(r"\n{2,}", "\n", instruction).strip().replace("\r\n", "\n") no_history = (history is None) if no_history: input = re.sub(r"\n{2,}", "\n", input).strip().replace("\r\n", "\n") ctx = generate_prompt(instruction, input, history) print(ctx + "\n") all_tokens = [] out_last = 0 out_str = "" occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward( pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state ) for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency token = pipeline.sample_logits( out, temperature=args.temperature, top_p=args.top_p ) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if "\ufffd" not in tmp: out_str += tmp if no_history: yield out_str.strip() else: for char in tmp: yield char out_last = i + 1 if "\n\n" in out_str: break del out del state gc.collect() yield out_str.strip() def user(message, chatbot): chatbot = chatbot or [] return "", chatbot + [[message, None]] def alternative(chatbot, history): if not chatbot or not history: return chatbot, history chatbot[-1][1] = None history[0] = copy.deepcopy(history[1]) return chatbot, history with gr.Blocks(title=title) as demo: gr.HTML(f'