import gradio as gr import gc, copy, re from huggingface_hub import hf_hub_download from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS ctx_limit = 2048 title = "RWKV-5-World-0.4B-v2-20231113-ctx4096.pth" model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{title}") model = RWKV(model=model_path, strategy='cpu bf16') pipeline = PIPELINE(model, "rwkv_vocab_v20230424") def generate_prompt(instruction, input=None): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n') if input and len(input) > 0: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" examples = [ ["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5], ["Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.", "", 300, 1.2, 0.5, 0.5, 0.5], ["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5], ["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5], ["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.5, 0.5], ["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.5, 0.5], ["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.5, 0.5], ] def evaluate( instruction, input=None, token_count=200, temperature=1.0, top_p=0.5, presencePenalty = 0.5, countPenalty = 0.5, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here instruction = re.sub(r'\n{2,}', '\n', instruction).strip().replace('\r\n','\n') input = re.sub(r'\n{2,}', '\n', input).strip().replace('\r\n','\n') ctx = generate_prompt(instruction, input) print(ctx + "\n") all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 if '\n\n' in out_str: break del out del state gc.collect() yield out_str.strip() def user(message, chatbot): chatbot = chatbot or [] return "", chatbot + [[message, None]] def alternative(chatbot, history): if not chatbot or not history: return chatbot, history chatbot[-1][1] = None history[0] = copy.deepcopy(history[1]) return chatbot, history with gr.Blocks(title=title) as demo: gr.HTML(f"