Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import gc, copy, re
|
3 |
import urllib.request
|
4 |
from rwkv.model import RWKV
|
5 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
6 |
|
7 |
-
ctx_limit =
|
8 |
-
title = "RWKV-5-World-0.
|
9 |
|
10 |
url = f"https://huggingface.co/BlinkDL/rwkv-5-world/resolve/main/{title}"
|
11 |
urllib.request.urlretrieve(url, title)
|
@@ -13,21 +14,22 @@ urllib.request.urlretrieve(url, title)
|
|
13 |
model = RWKV(model=title, strategy='cpu bf16')
|
14 |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
15 |
|
16 |
-
def generate_prompt(instruction, input=None):
|
|
|
|
|
|
|
|
|
|
|
17 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
|
18 |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
|
19 |
if input and len(input) > 0:
|
20 |
-
return f"""Instruction: {instruction}
|
21 |
|
22 |
Input: {input}
|
23 |
|
24 |
Response:"""
|
25 |
else:
|
26 |
-
return f"""User:
|
27 |
-
|
28 |
-
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
29 |
-
|
30 |
-
User: {instruction}
|
31 |
|
32 |
Assistant:"""
|
33 |
|
@@ -49,6 +51,7 @@ def evaluate(
|
|
49 |
top_p=0.5,
|
50 |
presencePenalty = 0.5,
|
51 |
countPenalty = 0.5,
|
|
|
52 |
):
|
53 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
54 |
alpha_frequency = countPenalty,
|
@@ -58,7 +61,7 @@ def evaluate(
|
|
58 |
|
59 |
instruction = re.sub(r'\n{2,}', '\n', instruction).strip().replace('\r\n','\n')
|
60 |
input = re.sub(r'\n{2,}', '\n', input).strip().replace('\r\n','\n')
|
61 |
-
ctx = generate_prompt(instruction, input)
|
62 |
print(ctx + "\n")
|
63 |
|
64 |
all_tokens = []
|
@@ -111,26 +114,28 @@ def alternative(chatbot, history):
|
|
111 |
|
112 |
with gr.Blocks(title=title) as demo:
|
113 |
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🌍World - {title}</h1>\n</div>")
|
|
|
114 |
with gr.Tab("Instruct mode"):
|
115 |
-
gr.Markdown(f"100% RNN RWKV-LM **trained on 100+
|
116 |
with gr.Row():
|
117 |
with gr.Column():
|
118 |
-
instruction = gr.Textbox(lines=2, label="Instruction", value='
|
119 |
input = gr.Textbox(lines=2, label="Input", placeholder="")
|
120 |
token_count = gr.Slider(10, 300, label="Max Tokens", step=10, value=300)
|
121 |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
|
122 |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
|
123 |
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
|
124 |
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.7)
|
125 |
-
with gr.Column():
|
126 |
-
with gr.Row():
|
127 |
-
submit = gr.Button("Submit", variant="primary")
|
128 |
-
clear = gr.Button("Clear", variant="secondary")
|
129 |
-
output = gr.Textbox(label="Output", lines=5)
|
130 |
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
131 |
-
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
132 |
-
clear.click(lambda: None, [], [output])
|
133 |
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
demo.queue(max_size=10)
|
136 |
-
demo.launch(share=False)
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
import gc, copy, re
|
4 |
import urllib.request
|
5 |
from rwkv.model import RWKV
|
6 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
7 |
|
8 |
+
ctx_limit = 4096
|
9 |
+
title = "RWKV-5-World-0.1B-v1-20230803-ctx4096.pth"
|
10 |
|
11 |
url = f"https://huggingface.co/BlinkDL/rwkv-5-world/resolve/main/{title}"
|
12 |
urllib.request.urlretrieve(url, title)
|
|
|
14 |
model = RWKV(model=title, strategy='cpu bf16')
|
15 |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
16 |
|
17 |
+
def generate_prompt(instruction, input=None, history=None):
|
18 |
+
# Parse the chat history into a string of user and assistant messages
|
19 |
+
history_str = ""
|
20 |
+
for pair in history:
|
21 |
+
history_str += f"Instruction: {pair[0]}\n\nAssistant: {pair[1]}\n\n"
|
22 |
+
|
23 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
|
24 |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
|
25 |
if input and len(input) > 0:
|
26 |
+
return f"""{history_str}Instruction: {instruction}
|
27 |
|
28 |
Input: {input}
|
29 |
|
30 |
Response:"""
|
31 |
else:
|
32 |
+
return f"""{history_str}User: {instruction}
|
|
|
|
|
|
|
|
|
33 |
|
34 |
Assistant:"""
|
35 |
|
|
|
51 |
top_p=0.5,
|
52 |
presencePenalty = 0.5,
|
53 |
countPenalty = 0.5,
|
54 |
+
history=None # Add the history parameter to the evaluate function
|
55 |
):
|
56 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
57 |
alpha_frequency = countPenalty,
|
|
|
61 |
|
62 |
instruction = re.sub(r'\n{2,}', '\n', instruction).strip().replace('\r\n','\n')
|
63 |
input = re.sub(r'\n{2,}', '\n', input).strip().replace('\r\n','\n')
|
64 |
+
ctx = generate_prompt(instruction, input, history) # Pass the history to the generate_prompt function
|
65 |
print(ctx + "\n")
|
66 |
|
67 |
all_tokens = []
|
|
|
114 |
|
115 |
with gr.Blocks(title=title) as demo:
|
116 |
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🌍World - {title}</h1>\n</div>")
|
117 |
+
|
118 |
with gr.Tab("Instruct mode"):
|
119 |
+
gr.Markdown(f"100% RNN RWKV-LM **trained on 100+ natural languages**. Demo limited to ctxlen {ctx_limit}. For best results, <b>keep your prompt short and clear</b>.")
|
120 |
with gr.Row():
|
121 |
with gr.Column():
|
122 |
+
instruction = gr.Textbox(lines=2, label="Instruction", value="Please show me a table with a cheat sheet of Python's syntax.")
|
123 |
input = gr.Textbox(lines=2, label="Input", placeholder="")
|
124 |
token_count = gr.Slider(10, 300, label="Max Tokens", step=10, value=300)
|
125 |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
|
126 |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
|
127 |
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
|
128 |
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.7)
|
|
|
|
|
|
|
|
|
|
|
129 |
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
|
|
|
|
130 |
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
|
131 |
|
132 |
+
with gr.Tab("Chat mode"):
|
133 |
+
chatbot = gr.ChatInterface(fn=evaluate,
|
134 |
+
additional_inputs=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty],
|
135 |
+
additional_inputs_accordion="Parameters",
|
136 |
+
examples=["Hello", "Write a poem about love", "Generate a list of prime numbers"],
|
137 |
+
title="RWKV Chatbot",
|
138 |
+
description="A chatbot that can generate creative and informative content based on instructions and inputs")
|
139 |
+
|
140 |
demo.queue(max_size=10)
|
141 |
+
demo.launch(share=False)
|