import numpy as np import gradio as gr from datasets import load_dataset def generate_random_data(): # Load the dataset with the `large_random_1k` subset dataset = load_dataset('poloclub/diffusiondb', 'large_random_1k') # All data are stored in the `train` split my_1k_data = dataset['train'] random_i = np.random.choice(range(my_1k_data.num_rows)) prompt = my_1k_data['prompt'][random_i] image = my_1k_data['image'][random_i] seed = my_1k_data['seed'][random_i] step = my_1k_data['step'][random_i] cfg = my_1k_data['cfg'][random_i] sampler = my_1k_data['sampler'][random_i] return prompt, image, seed, step, cfg, sampler def random_data(): prompt, image, seed, step, cfg, sampler = generate_random_data() data = { 'Prompt': prompt, 'Seed': seed, 'Step': step, 'CFG': cfg, 'Sampler': sampler } with open("random_data.txt", "w") as file: for key, value in data.items(): file.write(f"{key}: {value}\n") return prompt, image, seed, step, cfg, sampler iface = gr.Interface(fn=random_data, inputs=None, outputs=[ gr.outputs.Textbox(label="Prompt"), gr.outputs.Image(label="Image", type="pil"), gr.outputs.Textbox(label="Seed"), gr.outputs.Textbox(label="Step"), gr.outputs.Textbox(label="CFG"), gr.outputs.Textbox(label="Sampler") ], title="Stable Diffusion DB", description="By Falah.G.S AI Developer") iface.launch(debug=True)