Spaces:
Sleeping
Sleeping
Doux Thibault
commited on
Commit
·
7f184fa
1
Parent(s):
8c081b3
rag + websearch
Browse files- Modules/rag.py +75 -48
- Modules/websearch_agent.py +30 -0
Modules/rag.py
CHANGED
@@ -1,55 +1,68 @@
|
|
1 |
import os
|
2 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
3 |
os.environ['MISTRAL_API_KEY'] = "i5jSJkCFNGKfgIztloxTMjfckiFbYBj4"
|
4 |
-
os.environ['OPENAI_API_KEY'] = ""
|
5 |
os.environ['TAVILY_API_KEY'] = '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'
|
6 |
|
7 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
8 |
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
9 |
-
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.document_loaders import WebBaseLoader
|
12 |
from langchain_community.vectorstores import Chroma, FAISS
|
13 |
from langchain_mistralai import MistralAIEmbeddings
|
14 |
-
from
|
15 |
from typing import Literal
|
16 |
-
|
17 |
from langchain_core.prompts import ChatPromptTemplate
|
18 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
19 |
from langchain_mistralai import ChatMistralAI
|
20 |
-
from sentence_transformers import SentenceTransformer
|
21 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
22 |
-
from
|
23 |
-
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
24 |
|
25 |
-
urls = [
|
26 |
-
|
27 |
-
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
|
28 |
-
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
|
29 |
-
]
|
30 |
|
31 |
-
|
32 |
-
docs_list = [item for sublist in docs for item in sublist]
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
##################### EMBED #####################
|
40 |
-
# embeddings = MistralAIEmbeddings(mistral_api_key=mistral_api_key)
|
41 |
-
embeddings = OpenAIEmbeddings()
|
42 |
-
############## VECTORSTORE ##################
|
43 |
-
# vectorstore = FAISS.from_documents(
|
44 |
-
# documents=doc_splits,
|
45 |
-
# embedding=embeddings
|
46 |
# )
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
retriever = vectorstore.as_retriever()
|
|
|
|
|
53 |
|
54 |
# Data model
|
55 |
class RouteQuery(BaseModel):
|
@@ -61,21 +74,35 @@ class RouteQuery(BaseModel):
|
|
61 |
)
|
62 |
|
63 |
# LLM with function call
|
64 |
-
|
65 |
-
|
66 |
-
# structured_llm_router = llm.with_structured_output(RouteQuery)
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
#
|
80 |
-
# print(question_router.invoke({"question": "Who will the Bears draft first in the NFL draft?"}))
|
81 |
-
# print(question_router.invoke({"question": "What are the types of agent memory?"}))
|
|
|
1 |
import os
|
2 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
3 |
os.environ['MISTRAL_API_KEY'] = "i5jSJkCFNGKfgIztloxTMjfckiFbYBj4"
|
4 |
+
# os.environ['OPENAI_API_KEY'] = "sk-proj-2WJfO8JpVyrdIeJ8QsO0T3BlbkFJWLhZF1xMlRZVFjNBccWh"
|
5 |
os.environ['TAVILY_API_KEY'] = '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'
|
6 |
|
7 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
8 |
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.document_loaders import WebBaseLoader
|
12 |
from langchain_community.vectorstores import Chroma, FAISS
|
13 |
from langchain_mistralai import MistralAIEmbeddings
|
14 |
+
from langchain import hub
|
15 |
from typing import Literal
|
|
|
16 |
from langchain_core.prompts import ChatPromptTemplate
|
17 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
18 |
from langchain_mistralai import ChatMistralAI
|
|
|
19 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
20 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
|
|
21 |
|
22 |
+
# urls = [
|
23 |
+
# "https://www.toutelanutrition.com/wikifit/guide-nutrition/nutrition-sportive/apports-proteines",
|
|
|
|
|
|
|
24 |
|
25 |
+
# ]
|
|
|
26 |
|
27 |
+
# docs = [WebBaseLoader(url).load() for url in urls]
|
28 |
+
# docs_list = [item for sublist in docs for item in sublist]
|
29 |
+
|
30 |
+
# text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
31 |
+
# chunk_size=250, chunk_overlap=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# )
|
33 |
+
# doc_splits = text_splitter.split_documents(docs_list)
|
34 |
+
|
35 |
+
####### PDF
|
36 |
+
def load_chunk_persist_pdf() -> Chroma:
|
37 |
+
pdf_folder_path = "data/pdf_folder/"
|
38 |
+
documents = []
|
39 |
+
for file in os.listdir(pdf_folder_path):
|
40 |
+
if file.endswith('.pdf'):
|
41 |
+
pdf_path = os.path.join(pdf_folder_path, file)
|
42 |
+
loader = PyPDFLoader(pdf_path)
|
43 |
+
documents.extend(loader.load())
|
44 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
45 |
+
chunked_documents = text_splitter.split_documents(documents)
|
46 |
+
|
47 |
+
vectorstore = Chroma.from_documents(
|
48 |
+
documents=chunked_documents,
|
49 |
+
embedding=MistralAIEmbeddings(),
|
50 |
+
persist_directory="data/chroma_store/"
|
51 |
+
)
|
52 |
+
vectorstore.persist()
|
53 |
+
return vectorstore
|
54 |
+
|
55 |
+
# from langchain_community.document_loaders import PyPDFLoader
|
56 |
+
# loader = PyPDFLoader('data/fitness_programs/ZeroToHero.pdf')
|
57 |
+
# pages = loader.load_and_split()
|
58 |
+
|
59 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
60 |
+
# splits = text_splitter.split_documents(pages)
|
61 |
+
# vectorstore = Chroma.from_documents(documents=splits, embedding=MistralAIEmbeddings())
|
62 |
+
vectorstore = load_chunk_persist_pdf()
|
63 |
retriever = vectorstore.as_retriever()
|
64 |
+
prompt = hub.pull("rlm/rag-prompt")
|
65 |
+
|
66 |
|
67 |
# Data model
|
68 |
class RouteQuery(BaseModel):
|
|
|
74 |
)
|
75 |
|
76 |
# LLM with function call
|
77 |
+
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
78 |
+
|
79 |
+
# structured_llm_router = llm.with_structured_output(RouteQuery, method="json_mode")
|
80 |
+
|
81 |
+
# Prompt
|
82 |
+
system = """You are an expert at routing a user question to a vectorstore or web search.
|
83 |
+
The vectorstore contains documents related to agents, prompt engineering, and adversarial attacks.
|
84 |
+
Use the vectorstore for questions on these topics. For all else, use web-search."""
|
85 |
+
route_prompt = ChatPromptTemplate.from_messages(
|
86 |
+
[
|
87 |
+
("system", system),
|
88 |
+
("human", "{question}"),
|
89 |
+
]
|
90 |
+
)
|
91 |
+
prompt = hub.pull("rlm/rag-prompt")
|
92 |
+
from langchain_core.output_parsers import StrOutputParser
|
93 |
+
from langchain_core.runnables import RunnablePassthrough
|
94 |
+
|
95 |
+
def format_docs(docs):
|
96 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
97 |
+
|
98 |
+
|
99 |
+
rag_chain = (
|
100 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
101 |
+
| prompt
|
102 |
+
| llm
|
103 |
+
| StrOutputParser()
|
104 |
+
)
|
105 |
+
|
106 |
+
print(rag_chain.invoke("Build a fitness program for me. Be precise in terms of exercises"))
|
107 |
|
108 |
+
# print(rag_chain.invoke("I am a 45 years old woman and I have to loose weight for the summer. Provide me with a fitness program"))
|
|
|
|
Modules/websearch_agent.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
3 |
+
os.environ['MISTRAL_API_KEY'] = "i5jSJkCFNGKfgIztloxTMjfckiFbYBj4"
|
4 |
+
|
5 |
+
from langchain import hub
|
6 |
+
from langchain.agents import AgentExecutor, create_json_chat_agent
|
7 |
+
from langchain_mistralai.chat_models import ChatMistralAI
|
8 |
+
|
9 |
+
prompt = hub.pull("hwchase17/react-chat-json")
|
10 |
+
|
11 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
12 |
+
|
13 |
+
tools = [DuckDuckGoSearchRun()]
|
14 |
+
|
15 |
+
llm = ChatMistralAI(model='mistral-large-latest')
|
16 |
+
|
17 |
+
agent = create_json_chat_agent(
|
18 |
+
llm=llm,
|
19 |
+
tools=tools,
|
20 |
+
prompt=prompt,
|
21 |
+
)
|
22 |
+
|
23 |
+
agent_executor = AgentExecutor(
|
24 |
+
agent=agent,
|
25 |
+
tools=tools,
|
26 |
+
verbose=True,
|
27 |
+
handle_parsing_errors=True
|
28 |
+
)
|
29 |
+
|
30 |
+
agent_executor.invoke({"input":"How many proteins should I eat per day? Search mainly on wikipedia"})
|