Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from sklearn.model_selection import train_test_split | |
from sklearn.neighbors import KNeighborsClassifier | |
import gradio as gr | |
# Load data | |
nexus_bank = pd.read_csv('nexus_bank_dataa.csv') | |
# Preprocessing | |
X = nexus_bank[['salary', 'dependents']] | |
y = nexus_bank['defaulter'] | |
# Train-test split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90) | |
# Model training | |
knn_classifier = KNeighborsClassifier() | |
knn_classifier.fit(X_train, y_train) | |
# Prediction function | |
def predict_defaulter(salary, dependents): | |
input_data = [[salary, dependents]] | |
knn_predict = knn_classifier.predict(input_data) | |
return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter" | |
# Interface | |
interface = gr.Interface( | |
fn=predict_defaulter, | |
inputs=["number", "number"], | |
outputs="text", | |
title="Defaulter Prediction", | |
description="This app predicts whether an individual is likely to default based on their salary and number of dependents. Input the respective values and get instant predictions." | |
) | |
# Launch the interface | |
interface.launch() | |