File size: 11,486 Bytes
d0f716d
 
 
 
 
 
 
b0f25b3
d0f716d
aa2aec1
d0f716d
 
 
c0f084a
 
 
 
 
aa2aec1
d0f716d
 
c0f084a
 
0e30f40
 
c0f084a
 
 
 
 
0e30f40
 
 
b0f25b3
aa2aec1
 
 
 
 
0e30f40
 
 
 
 
 
c0f084a
 
 
 
 
 
 
 
b0f25b3
c0f084a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e30f40
b0f25b3
 
 
 
aa2aec1
c0f084a
b0f25b3
 
0e30f40
b0f25b3
aa2aec1
 
 
 
 
 
c0f084a
 
 
 
aa2aec1
 
b0f25b3
aa2aec1
 
 
 
 
 
 
b0f25b3
 
aa2aec1
 
b0f25b3
aa2aec1
 
b0f25b3
 
 
 
 
 
 
 
 
0e30f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f084a
 
 
0e30f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f084a
0e30f40
c0f084a
0e30f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f084a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f25b3
 
 
aa2aec1
 
 
 
 
 
b0f25b3
 
 
 
 
 
aa2aec1
 
b0f25b3
 
 
 
 
 
 
 
 
 
 
aa2aec1
b0f25b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""
File: calculate_practical_tasks.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Event handler for Gradio app to calculate practical tasks.
License: MIT License
"""

from app.oceanai_init import b5
import gradio as gr
from pathlib import Path

# Importing necessary components for the Gradio app
from app.config import config_data
from app.utils import (
    read_csv_file,
    apply_rounding_and_rename_columns,
    preprocess_scores_df,
)
from app.components import html_message, dataframe, files_create_ui, video_create_ui


def colleague_type(subtask):
    return "minor" if "junior" in subtask.lower() else "major"


def consumer_preferences(subtask):
    return (
        config_data.Filenames_CAR_CHARACTERISTICS
        if "mobile device" in subtask.lower()
        else config_data.Filenames_MDA_CATEGORIES
    )


def event_handler_calculate_practical_task_blocks(
    files,
    practical_subtasks,
    pt_scores,
    threshold_professional_skills,
    dropdown_professional_skills,
    target_score_ope,
    target_score_con,
    target_score_ext,
    target_score_agr,
    target_score_nneu,
    equal_coefficient,
    number_priority,
    number_importance_traits,
    threshold_consumer_preferences,
    number_openness,
    number_conscientiousness,
    number_extraversion,
    number_agreeableness,
    number_non_neuroticism,
):
    if practical_subtasks.lower() == "professional groups":
        sum_weights = sum(
            [
                number_openness,
                number_conscientiousness,
                number_extraversion,
                number_agreeableness,
                number_non_neuroticism,
            ]
        )

        if sum_weights != 100:
            gr.Warning(config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights))

            return (
                gr.Row(visible=False),
                gr.Column(visible=False),
                dataframe(visible=False),
                files_create_ui(
                    None,
                    "single",
                    [".csv"],
                    config_data.OtherMessages_EXPORT_PS,
                    True,
                    False,
                    False,
                    "csv-container",
                ),
                video_create_ui(visible=False),
                html_message(
                    config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights),
                    False,
                    True,
                ),
            )
        else:
            b5._candidate_ranking(
                df_files=pt_scores.iloc[:, 1:],
                weigths_openness=number_openness,
                weigths_conscientiousness=number_conscientiousness,
                weigths_extraversion=number_extraversion,
                weigths_agreeableness=number_agreeableness,
                weigths_non_neuroticism=number_non_neuroticism,
                out=False,
            )

            df = apply_rounding_and_rename_columns(b5.df_files_ranking_)

            df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)

            df_hidden.to_csv(config_data.Filenames_POTENTIAL_CANDIDATES)

            df_hidden.reset_index(inplace=True)

            person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

            return (
                gr.Row(visible=True),
                gr.Column(visible=True),
                dataframe(
                    headers=df_hidden.columns.tolist(),
                    values=df_hidden.values.tolist(),
                    visible=True,
                ),
                files_create_ui(
                    config_data.Filenames_POTENTIAL_CANDIDATES,
                    "single",
                    [".csv"],
                    config_data.OtherMessages_EXPORT_PG,
                    True,
                    False,
                    True,
                    "csv-container",
                ),
                video_create_ui(
                    value=files[person_id],
                    file_name=Path(files[person_id]).name,
                    label="Best Person ID - " + str(person_id + 1),
                    visible=True,
                ),
                html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
            )
    elif practical_subtasks.lower() == "professional skills":
        df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)

        b5._priority_skill_calculation(
            df_files=pt_scores.iloc[:, 1:],
            correlation_coefficients=df_professional_skills,
            threshold=threshold_professional_skills,
            out=False,
        )

        df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_)

        professional_skills_list = (
            config_data.Settings_DROPDOWN_PROFESSIONAL_SKILLS.copy()
        )

        professional_skills_list.remove(dropdown_professional_skills)

        df_hidden = df.drop(
            columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
            + professional_skills_list
        )

        df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)

        df_hidden.reset_index(inplace=True)

        df_hidden = df_hidden.sort_values(
            by=[dropdown_professional_skills], ascending=False
        )

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                config_data.Filenames_PT_SKILLS_SCORES,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_PS,
                True,
                False,
                True,
                "csv-container",
            ),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    elif (
        practical_subtasks.lower() == "finding a suitable junior colleague"
        or practical_subtasks.lower() == "finding a suitable senior colleague"
    ):
        df_correlation_coefficients = read_csv_file(
            config_data.Links_FINDING_COLLEAGUE, ["ID"]
        )

        b5._colleague_ranking(
            df_files=pt_scores.iloc[:, 1:],
            correlation_coefficients=df_correlation_coefficients,
            target_scores=[
                target_score_ope,
                target_score_con,
                target_score_ext,
                target_score_agr,
                target_score_nneu,
            ],
            colleague=colleague_type(practical_subtasks),
            equal_coefficients=equal_coefficient,
            out=False,
        )

        df = apply_rounding_and_rename_columns(b5.df_files_colleague_)

        df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)

        df_hidden.to_csv(
            colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING
        )

        df_hidden.reset_index(inplace=True)

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                colleague_type(practical_subtasks)
                + config_data.Filenames_COLLEAGUE_RANKING,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_WT,
                True,
                False,
                True,
                "csv-container",
            ),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    elif (
        practical_subtasks.lower() == "car characteristics"
        or practical_subtasks.lower() == "mobile device application categories"
    ):
        if practical_subtasks.lower() == "car characteristics":
            df_correlation_coefficients = read_csv_file(
                config_data.Links_CAR_CHARACTERISTICS,
                ["Style and performance", "Safety and practicality"],
            )
        if practical_subtasks.lower() == "mobile device application categories":
            df_correlation_coefficients = read_csv_file(
                config_data.Links_MDA_CATEGORIES
            )

        pt_scores_copy = pt_scores.iloc[:, 1:].copy()

        preprocess_scores_df(pt_scores_copy, "Person ID")

        b5._priority_calculation(
            df_files=pt_scores_copy,
            correlation_coefficients=df_correlation_coefficients,
            col_name_ocean="Trait",
            threshold=threshold_consumer_preferences,
            number_priority=number_priority,
            number_importance_traits=number_importance_traits,
            out=False,
        )

        df_files_priority = b5.df_files_priority_.copy()
        df_files_priority.reset_index(inplace=True)

        df = apply_rounding_and_rename_columns(df_files_priority.iloc[:, 1:])

        preprocess_scores_df(df, "Person ID")

        df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)

        df_hidden.to_csv(consumer_preferences(practical_subtasks))

        df_hidden.reset_index(inplace=True)

        person_id = int(df_hidden.iloc[0]["Person ID"]) - 1

        return (
            gr.Row(visible=True),
            gr.Column(visible=True),
            dataframe(
                headers=df_hidden.columns.tolist(),
                values=df_hidden.values.tolist(),
                visible=True,
            ),
            files_create_ui(
                consumer_preferences(practical_subtasks),
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_CP,
                True,
                False,
                True,
                "csv-container",
            ),
            video_create_ui(
                value=files[person_id],
                file_name=Path(files[person_id]).name,
                label="Best Person ID - " + str(person_id + 1),
                visible=True,
            ),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
        )
    else:
        gr.Info(config_data.InformationMessages_NOTI_IN_DEV)

        return (
            gr.Row(visible=False),
            gr.Column(visible=False),
            dataframe(visible=False),
            files_create_ui(
                None,
                "single",
                [".csv"],
                config_data.OtherMessages_EXPORT_PS,
                True,
                False,
                False,
                "csv-container",
            ),
            video_create_ui(visible=False),
            html_message(config_data.InformationMessages_NOTI_IN_DEV, False, True),
        )