import gradio as gr from fastai.vision.all import load_learner, PILImage # Load the pre-trained FastAI model model_path = "model.pkl" learn = load_learner(model_path) # Define the prediction function def predict(image): img = PILImage.create(image) pred_class, pred_idx, probs = learn.predict(img) return f"Prediction: {pred_class}, Probability: {probs[pred_idx]:.4f}" # Create the Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs="text", title="Homa image validation", description="Upload an image and get the model's text prediction." ) demo.launch()