Spaces:
Sleeping
Sleeping
File size: 1,395 Bytes
2f8382c ccd2173 f25eb0c a5dca46 f25eb0c 2f8382c f25eb0c 2f8382c f25eb0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Function to summarize using the fine-tuned BART model
def summarize_with_bart_ft(input_text):
pipe_bart_ft = pipeline("summarization", model="EE21/BART-ToSSimplify")
summary = pipe_bart_ft(input_text, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
return summary[0]['summary_text']
# Function to summarize using BART-large-cnn
def summarize_with_bart_cnn(input_text):
pipe = pipeline("summarization", model="facebook/bart-large-cnn")
summary = pipe(input_text, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
return summary[0]['summary_text']
# Function to summarize using led-base-book-summary
def summarize_with_led(input_text):
pipe_led = pipeline("summarization", model="pszemraj/led-base-book-summary")
summary = pipe_led(input_text, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
return summary[0]['summary_text']
# Function to summarize using long-t5-tglobal-base-sci-simplify
def summarize_with_t5(input_text):
pipe_t5 = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
summary = pipe_t5(input_text, max_length=300, min_length=100, num_beams=1, early_stopping=False, length_penalty=1)
return summary[0]['summary_text']
|