|
import torch |
|
import torch.nn as nn |
|
|
|
class EncodingBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(EncodingBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) |
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.activation = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.activation(x) |
|
x = self.conv2(x) |
|
x = self.activation(x) |
|
skip_connection = x |
|
x = self.pool(x) |
|
return x, skip_connection |
|
|
|
class DecodingBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(DecodingBlock, self).__init__() |
|
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=5, stride=2, padding=2) |
|
self.conv1 = nn.Conv2d(out_channels * 2, out_channels, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) |
|
self.activation = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x, skip_connection): |
|
x = self.conv_transpose(x) |
|
pd = (0, skip_connection.size(-1) - x.size(-1), 0, skip_connection.size(-2) - x.size(-2)) |
|
x = nn.functional.pad(x, pd, mode='constant', value=0) |
|
x = torch.cat((x, skip_connection), dim=1) |
|
x = self.conv1(x) |
|
x = self.activation(x) |
|
x = self.conv2(x) |
|
x = self.activation(x) |
|
return x |
|
|
|
class UNet(nn.Module): |
|
def __init__(self, init_features=32, bottleneck_size=512): |
|
super(UNet, self).__init__() |
|
self.encoding_block1 = EncodingBlock(1, init_features) |
|
self.encoding_block2 = EncodingBlock(init_features, init_features*2) |
|
self.encoding_block3 = EncodingBlock(init_features*2, init_features*4) |
|
self.encoding_block4 = EncodingBlock(init_features*4, init_features*8) |
|
|
|
self.bottleneck_conv1 = nn.Conv2d(init_features*8, bottleneck_size, kernel_size=3, padding=1) |
|
self.bottleneck_conv2 = nn.Conv2d(bottleneck_size, bottleneck_size, kernel_size=3, padding=1) |
|
|
|
self.decoding_block4 = DecodingBlock(bottleneck_size, init_features*8) |
|
self.decoding_block3 = DecodingBlock(init_features*8, init_features*4) |
|
self.decoding_block2 = DecodingBlock(init_features*4, init_features*2) |
|
self.decoding_block1 = DecodingBlock(init_features*2, init_features) |
|
|
|
self.final_conv = nn.Conv2d(init_features, 1, kernel_size=1) |
|
|
|
def forward(self, x): |
|
x, skip1 = self.encoding_block1(x) |
|
x, skip2 = self.encoding_block2(x) |
|
x, skip3 = self.encoding_block3(x) |
|
x, skip4 = self.encoding_block4(x) |
|
|
|
x = self.bottleneck_conv1(x) |
|
x = nn.ReLU(inplace=True)(x) |
|
x = self.bottleneck_conv2(x) |
|
x = nn.ReLU(inplace=True)(x) |
|
|
|
x = self.decoding_block4(x, skip4) |
|
x = self.decoding_block3(x, skip3) |
|
x = self.decoding_block2(x, skip2) |
|
x = self.decoding_block1(x, skip1) |
|
|
|
x = self.final_conv(x) |
|
return x |
|
|