chatcsv-test / app.py
DrishtiSharma's picture
Update app.py
8c4be15 verified
import streamlit as st
from pandasai.llm.openai import OpenAI
from pandasai import PandasAI
from dotenv import load_dotenv
import os
import pandas as pd
import time
from datasets import load_dataset # For Hugging Face datasets
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
# Initialize the LLM based on user selection
def initialize_llm(model_choice):
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
return None
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
return None
return OpenAI(api_token=openai_api_key)
# Load Hugging Face dataset
def load_huggingface_dataset(dataset_name):
progress_bar = st.progress(0)
try:
progress_bar.progress(10)
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
progress_bar.progress(50)
if hasattr(dataset, "to_pandas"):
df = dataset.to_pandas()
else:
df = pd.DataFrame(dataset)
progress_bar.progress(100)
return df
except Exception as e:
progress_bar.progress(0)
raise e
# Load uploaded CSV file
def load_uploaded_csv(uploaded_file):
progress_bar = st.progress(0)
try:
progress_bar.progress(10)
time.sleep(1)
progress_bar.progress(50)
df = pd.read_csv(uploaded_file)
progress_bar.progress(100)
return df
except Exception as e:
progress_bar.progress(0)
raise e
# Main function to handle interactions
def chat_with_csv(df, prompt, llm):
pandas_ai = PandasAI(llm)
result = pandas_ai.run(df, prompt=prompt)
return result
# Streamlit app layout
st.set_page_config(layout="wide")
st.title("ChatCSV powered by LLM")
# Initialize session state for data storage
if "data" not in st.session_state:
st.session_state.data = None
if "llm" not in st.session_state:
st.session_state.llm = None
# Select LLM model
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
st.session_state.llm = initialize_llm(model_choice)
if st.session_state.llm is not None:
# Dataset selection
input_option = st.radio(
"Select Dataset Input:",
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"],
index=2,
horizontal=True,
)
if input_option == "Use Repo Directory Dataset":
file_path = "./source/test.csv"
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset from the repo directory..."):
st.session_state.data = pd.read_csv(file_path)
st.success(f"File loaded successfully from '{file_path}'!")
except Exception as e:
st.error(f"Error loading dataset from the repo directory: {e}")
elif input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
if st.button("Load Dataset"):
try:
st.session_state.data = load_huggingface_dataset(dataset_name)
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error loading Hugging Face dataset: {e}")
elif input_option == "Upload CSV File":
input_csv = st.file_uploader("Upload a CSV File:", type=["csv"])
if input_csv:
try:
st.session_state.data = load_uploaded_csv(input_csv)
st.success("File uploaded successfully!")
except Exception as e:
st.error(f"Error reading uploaded file: {e}")
# Display the loaded dataset
if st.session_state.data is not None:
st.dataframe(st.session_state.data, use_container_width=True)
# Chat interface
input_text = st.text_area("Enter your query")
if input_text and st.button("Chat with CSV"):
try:
st.info("Your Query: " + input_text)
result = chat_with_csv(st.session_state.data, input_text, st.session_state.llm)
st.success(result)
except Exception as e:
st.error(f"Error processing your query: {e}")