feat: add `AI_session_overview_generator`notebook
Browse files
notebooks/AI_session_overview_generator.ipynb
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Generating Session Summary with LLMs\n",
|
8 |
+
"\n",
|
9 |
+
"This project utilizes LlamaIndex and AI technology to analyze Formula 1 car data and generate session summaries. It is particularly beneficial for race engineers seeking detailed insights and performance analysis during races.\n"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from dotenv import load_dotenv\n",
|
19 |
+
"load_dotenv()"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"metadata": {},
|
25 |
+
"source": [
|
26 |
+
"## Optional: Setup Observability\n",
|
27 |
+
"\n",
|
28 |
+
"Here we will use our Arize Phoenix integration to view traces through the query engine. It will be available at http://localhost:6006\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 18,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"name": "stderr",
|
38 |
+
"output_type": "stream",
|
39 |
+
"text": [
|
40 |
+
"WARNI [opentelemetry.instrumentation.instrumentor] Attempting to instrument while already instrumented\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"from openinference.instrumentation.llama_index import LlamaIndexInstrumentor\n",
|
46 |
+
"from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter\n",
|
47 |
+
"from opentelemetry.sdk import trace as trace_sdk\n",
|
48 |
+
"from opentelemetry.sdk.trace.export import SimpleSpanProcessor\n",
|
49 |
+
"\n",
|
50 |
+
"endpoint = \"http://127.0.0.1:6006/v1/traces\" # Phoenix receiver address\n",
|
51 |
+
"\n",
|
52 |
+
"tracer_provider = trace_sdk.TracerProvider()\n",
|
53 |
+
"tracer_provider.add_span_processor(\n",
|
54 |
+
" SimpleSpanProcessor(OTLPSpanExporter(endpoint)))\n",
|
55 |
+
"\n",
|
56 |
+
"LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "markdown",
|
61 |
+
"metadata": {},
|
62 |
+
"source": [
|
63 |
+
"### Start SQL Database\n"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 4,
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"from sqlalchemy import create_engine\n",
|
73 |
+
"from llama_index.core import SQLDatabase\n",
|
74 |
+
"\n",
|
75 |
+
"engine = create_engine('sqlite:///spain_practice_1.db')\n",
|
76 |
+
"\n",
|
77 |
+
"sql_database = SQLDatabase(engine, include_tables=[\"mercedes\"])"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "markdown",
|
82 |
+
"metadata": {},
|
83 |
+
"source": [
|
84 |
+
"### Define the LLM and the Embedding\n"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 19,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
|
94 |
+
"from llama_index.llms.openai import OpenAI\n",
|
95 |
+
"from llama_index.core import Settings\n",
|
96 |
+
"\n",
|
97 |
+
"Settings.llm = OpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
|
98 |
+
"Settings.embed_model = OpenAIEmbedding(model=\"text-embedding-ada-002\")"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "markdown",
|
103 |
+
"metadata": {},
|
104 |
+
"source": [
|
105 |
+
"### Define the Retriever and the Query Engine\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": 7,
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"from llama_index.core.retrievers import NLSQLRetriever\n",
|
115 |
+
"from llama_index.core.query_engine import RetrieverQueryEngine\n",
|
116 |
+
"\n",
|
117 |
+
"nl_sql_retriever = NLSQLRetriever(\n",
|
118 |
+
" sql_database, tables=[\"mercedes\"], return_raw=True\n",
|
119 |
+
")\n",
|
120 |
+
"\n",
|
121 |
+
"query_engine = RetrieverQueryEngine.from_args(nl_sql_retriever)"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "markdown",
|
126 |
+
"metadata": {},
|
127 |
+
"source": [
|
128 |
+
"### Start retrieving information to construct the report\n"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 8,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"name": "stderr",
|
138 |
+
"output_type": "stream",
|
139 |
+
"text": [
|
140 |
+
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
|
141 |
+
"I0000 00:00:1723244252.910416 2380678 fork_posix.cc:77] Other threads are currently calling into gRPC, skipping fork() handlers\n"
|
142 |
+
]
|
143 |
+
}
|
144 |
+
],
|
145 |
+
"source": [
|
146 |
+
"response = query_engine.query(\n",
|
147 |
+
" \"Which driver was faster on average on sector 1?\"\n",
|
148 |
+
")"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 9,
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [
|
156 |
+
{
|
157 |
+
"name": "stdout",
|
158 |
+
"output_type": "stream",
|
159 |
+
"text": [
|
160 |
+
">>> RUS was faster on average on sector 1.\n"
|
161 |
+
]
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"source": [
|
165 |
+
"print(\">>> \", str(response))"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": 15,
|
171 |
+
"metadata": {},
|
172 |
+
"outputs": [
|
173 |
+
{
|
174 |
+
"name": "stdout",
|
175 |
+
"output_type": "stream",
|
176 |
+
"text": [
|
177 |
+
">>> HAM\n"
|
178 |
+
]
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"source": [
|
182 |
+
"response2 = query_engine.query(\n",
|
183 |
+
" \"Which driver was faster on average on sector 2?\"\n",
|
184 |
+
")\n",
|
185 |
+
"\n",
|
186 |
+
"print(\">>> \", str(response2))"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": 20,
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [
|
194 |
+
{
|
195 |
+
"name": "stdout",
|
196 |
+
"output_type": "stream",
|
197 |
+
"text": [
|
198 |
+
">>> The driver HAM is 28 years old and has a lap time of 98.0705652173913 seconds with a top speed of 289.0 km/h.\n"
|
199 |
+
]
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"source": [
|
203 |
+
"response3 = query_engine.query(\n",
|
204 |
+
" \"Write a summary about the driver HAM\"\n",
|
205 |
+
")\n",
|
206 |
+
"\n",
|
207 |
+
"print(\">>> \", str(response3))"
|
208 |
+
]
|
209 |
+
}
|
210 |
+
],
|
211 |
+
"metadata": {
|
212 |
+
"kernelspec": {
|
213 |
+
"display_name": "llama",
|
214 |
+
"language": "python",
|
215 |
+
"name": "python3"
|
216 |
+
},
|
217 |
+
"language_info": {
|
218 |
+
"codemirror_mode": {
|
219 |
+
"name": "ipython",
|
220 |
+
"version": 3
|
221 |
+
},
|
222 |
+
"file_extension": ".py",
|
223 |
+
"mimetype": "text/x-python",
|
224 |
+
"name": "python",
|
225 |
+
"nbconvert_exporter": "python",
|
226 |
+
"pygments_lexer": "ipython3",
|
227 |
+
"version": "3.11.9"
|
228 |
+
}
|
229 |
+
},
|
230 |
+
"nbformat": 4,
|
231 |
+
"nbformat_minor": 2
|
232 |
+
}
|