import streamlit as st import yfinance as yf import requests import os from dotenv import load_dotenv from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser from langchain.schema import AgentAction, AgentFinish, HumanMessage from langchain.prompts import BaseChatPromptTemplate from langchain.tools import Tool from langchain_huggingface import HuggingFacePipeline from langchain import LLMChain from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from langchain.memory import ConversationBufferWindowMemory from statsmodels.tsa.arima.model import ARIMA import torch import re from typing import List, Union import plotly.graph_objects as go import pandas as pd from datetime import datetime, timedelta # Load environment variables from .env load_dotenv() NEWSAPI_KEY = os.getenv("NEWSAPI_KEY") access_token = os.getenv("API_KEY") # Check if the access token and API key are present if not NEWSAPI_KEY or not access_token: raise ValueError("NEWSAPI_KEY or API_KEY not found in .env file.") # Initialize the model and tokenizer for the HuggingFace pipeline tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=access_token) model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b-it", torch_dtype=torch.bfloat16, token=access_token ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) # Define functions for fetching stock data, news, and moving averages def validate_ticker(ticker): return ticker.strip().upper() def fetch_stock_data(ticker): try: ticker = ticker.strip().upper() stock = yf.Ticker(ticker) hist = stock.history(period="1mo") if hist.empty: return {"error": f"No data found for ticker {ticker}"} return hist.tail(5).to_dict() except Exception as e: return {"error": str(e)} def fetch_stock_news(ticker, NEWSAPI_KEY): api_url = f"https://newsapi.org/v2/everything?q={ticker}&apiKey={NEWSAPI_KEY}" response = requests.get(api_url) if response.status_code == 200: articles = response.json().get('articles', []) return [{"title": article['title'], "description": article['description']} for article in articles[:5]] else: return [{"error": "Unable to fetch news."}] def calculate_moving_average(ticker, window=5): stock = yf.Ticker(ticker) hist = stock.history(period="1mo") hist[f"{window}-day MA"] = hist["Close"].rolling(window=window).mean() return hist[["Close", f"{window}-day MA"]].tail(5) def analyze_sentiment(news_articles): sentiment_pipeline = pipeline("sentiment-analysis") results = [{"title": article["title"], "sentiment": sentiment_pipeline(article["description"] or article["title"])[0]} for article in news_articles] return results def predict_stock_price(ticker, days=5): stock = yf.Ticker(ticker) hist = stock.history(period="6mo") if hist.empty: return {"error": f"No data found for ticker {ticker}"} model = ARIMA(hist["Close"], order=(5, 1, 0)) model_fit = model.fit() forecast = model_fit.forecast(steps=days) # Create future dates for the forecast last_date = hist.index[-1] future_dates = pd.date_range(start=last_date + timedelta(days=1), periods=days, freq='B') return { "historical_data": hist[["Close"]].to_dict(), "forecast_dates": future_dates.strftime('%Y-%m-%d').tolist(), "forecast_values": forecast.tolist() } def compare_stocks(ticker1, ticker2): data1 = fetch_stock_data(ticker1) data2 = fetch_stock_data(ticker2) if "error" in data1 or "error" in data2: return {"error": "Could not fetch stock data for comparison."} comparison = { ticker1: {"recent_close": data1["Close"][-1]}, ticker2: {"recent_close": data2["Close"][-1]}, } return comparison # Define LangChain tools stock_data_tool = Tool( name="Stock Data Fetcher", func=fetch_stock_data, description="Fetch recent stock data for a valid stock ticker symbol (e.g., AAPL for Apple)." ) stock_news_tool = Tool( name="Stock News Fetcher", func=lambda ticker: fetch_stock_news(ticker, NEWSAPI_KEY), description="Fetch recent news articles about a stock ticker." ) moving_average_tool = Tool( name="Moving Average Calculator", func=calculate_moving_average, description="Calculate the moving average of a stock over a 5-day window." ) sentiment_tool = Tool( name="News Sentiment Analyzer", func=lambda ticker: analyze_sentiment(fetch_stock_news(ticker, NEWSAPI_KEY)), description="Analyze the sentiment of recent news articles about a stock ticker." ) stock_prediction_tool = Tool( name="Stock Price Predictor", func=predict_stock_price, description="Predict future stock prices for a given ticker based on historical data." ) stock_comparator_tool = Tool( name="Stock Comparator", func=lambda tickers: compare_stocks(*tickers.split(',')), description="Compare the recent performance of two stocks given their tickers, e.g., 'AAPL,MSFT'." ) tools = [ stock_data_tool, stock_news_tool, moving_average_tool, sentiment_tool, stock_prediction_tool, stock_comparator_tool ] # Set up a prompt template with history template_with_history = """You are SearchGPT, a professional search engine who provides informative answers to users. Answer the following questions as best you can. You have access to the following tools: {tools} Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question Begin! Remember to give detailed, informative answers Previous conversation history: {history} New question: {input} {agent_scratchpad}""" # Set up the prompt template class CustomPromptTemplate(BaseChatPromptTemplate): template: str tools: List[Tool] def format_messages(self, **kwargs) -> str: intermediate_steps = kwargs.pop("intermediate_steps") thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\nObservation: {observation}\nThought: " kwargs["agent_scratchpad"] = thoughts kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) formatted = self.template.format(**kwargs) return [HumanMessage(content=formatted)] prompt_with_history = CustomPromptTemplate( template=template_with_history, tools=tools, input_variables=["input", "intermediate_steps", "history"] ) # Custom output parser class CustomOutputParser(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: if "Final Answer:" in llm_output: return AgentFinish( return_values={"output": llm_output.split("Final Answer:")[-1].strip()}, log=llm_output, ) regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output) output_parser = CustomOutputParser() # Initialize HuggingFace pipeline llm = HuggingFacePipeline(pipeline=pipe) # LLM chain llm_chain = LLMChain(llm=llm, prompt=prompt_with_history) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) memory = ConversationBufferWindowMemory(k=2) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) # Streamlit app st.title("Trading Helper Agent") query = st.text_input("Enter your query:") if st.button("Submit"): if query: st.write("Debug: User Query ->", query) with st.spinner("Processing..."): try: response = agent_executor.run(query) st.success("Response:") st.write(response) # Extract ticker from query (basic extraction, you might want to make this more robust) possible_tickers = re.findall(r'[A-Z]{1,5}', query.upper()) if possible_tickers: ticker = possible_tickers[0] # Create tabs for different visualizations tab1, tab2, tab3 = st.tabs(["Price History", "Price Prediction", "Technical Indicators"]) with tab1: st.subheader(f"{ticker} Price History") stock = yf.Ticker(ticker) hist = stock.history(period="1y") fig = go.Figure() fig.add_trace(go.Candlestick( x=hist.index, open=hist['Open'], high=hist['High'], low=hist['Low'], close=hist['Close'], name='OHLC' )) fig.update_layout(title=f"{ticker} Stock Price", xaxis_title="Date", yaxis_title="Price") st.plotly_chart(fig) with tab2: st.subheader(f"{ticker} Price Prediction") prediction_data = predict_stock_price(ticker) if "error" not in prediction_data: hist_df = pd.DataFrame(prediction_data["historical_data"]) fig = go.Figure() # Plot historical data fig.add_trace(go.Scatter( x=hist_df.index, y=hist_df['Close'], name='Historical', line=dict(color='blue') )) # Plot predicted data fig.add_trace(go.Scatter( x=prediction_data["forecast_dates"], y=prediction_data["forecast_values"], name='Predicted', line=dict(color='red', dash='dash') )) fig.update_layout(title=f"{ticker} Price Prediction", xaxis_title="Date", yaxis_title="Price") st.plotly_chart(fig) with tab3: st.subheader(f"{ticker} Technical Indicators") # Calculate and plot moving averages hist['MA5'] = hist['Close'].rolling(window=5).mean() hist['MA20'] = hist['Close'].rolling(window=20).mean() hist['MA50'] = hist['Close'].rolling(window=50).mean() fig = go.Figure() fig.add_trace(go.Scatter(x=hist.index, y=hist['Close'], name='Price')) fig.add_trace(go.Scatter(x=hist.index, y=hist['MA5'], name='5-day MA')) fig.add_trace(go.Scatter(x=hist.index, y=hist['MA20'], name='20-day MA')) fig.add_trace(go.Scatter(x=hist.index, y=hist['MA50'], name='50-day MA')) fig.update_layout(title=f"{ticker} Technical Indicators", xaxis_title="Date", yaxis_title="Price") st.plotly_chart(fig) except Exception as e: st.error(f"An error occurred: {e}") if hasattr(e, "output"): st.write("Raw Output:", e.output) else: st.warning("Please enter a query.")