File size: 6,691 Bytes
af978d7
c4c99cc
 
 
 
a7f8412
 
 
 
b701198
a7f8412
ee1c031
a7f8412
 
20d39a9
b701198
ba1be70
a7f8412
ba1be70
 
 
a7f8412
 
 
 
b701198
a7f8412
 
96b4247
ba1be70
b701198
ba1be70
 
 
c4c99cc
20d39a9
ba1be70
20d39a9
 
 
 
 
 
 
 
c4c99cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b701198
c4c99cc
 
 
20d39a9
c4c99cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f8412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c99cc
a7f8412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c99cc
 
a7f8412
 
 
b701198
c4c99cc
 
 
 
 
 
ba1be70
c4c99cc
 
b701198
a7f8412
c4c99cc
 
 
 
ba1be70
 
 
c4c99cc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st
import yfinance as yf
import requests
import os
from dotenv import load_dotenv
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import BaseChatPromptTemplate
from langchain.tools import Tool
from langchain_huggingface import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.memory import ConversationBufferWindowMemory
import torch
import re
from typing import List, Union

# Load environment variables from .env
load_dotenv()

NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
access_token = os.getenv("API_KEY")

# Check if the access token and API key are present
if not NEWSAPI_KEY or not access_token:
    raise ValueError("NEWSAPI_KEY or API_KEY not found in .env file.")

# Initialize the model and tokenizer for the HuggingFace pipeline
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", torch_dtype=torch.bfloat16)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)

# Define functions for fetching stock data, news, and moving averages
def validate_ticker(ticker):
    return ticker.strip().upper()

def fetch_stock_data(ticker):
    try:
        ticker = ticker.strip().upper()
        stock = yf.Ticker(ticker)
        hist = stock.history(period="1mo")
        if hist.empty:
            return {"error": f"No data found for ticker {ticker}"}
        return hist.tail(5).to_dict()
    except Exception as e:
        return {"error": str(e)}

def fetch_stock_news(ticker, NEWSAPI_KEY):
    api_url = f"https://newsapi.org/v2/everything?q={ticker}&apiKey={NEWSAPI_KEY}"
    response = requests.get(api_url)
    if response.status_code == 200:
        articles = response.json().get('articles', [])
        return [{"title": article['title'], "description": article['description']} for article in articles[:5]]
    else:
        return [{"error": "Unable to fetch news."}]

def calculate_moving_average(ticker, window=5):
    stock = yf.Ticker(ticker)
    hist = stock.history(period="1mo")
    hist[f"{window}-day MA"] = hist["Close"].rolling(window=window).mean()
    return hist[["Close", f"{window}-day MA"]].tail(5)

# Define LangChain tools
stock_data_tool = Tool(
    name="Stock Data Fetcher",
    func=fetch_stock_data,
    description="Fetch recent stock data for a valid stock ticker symbol (e.g., AAPL for Apple)."
)

stock_news_tool = Tool(
    name="Stock News Fetcher",
    func=lambda ticker: fetch_stock_news(ticker, NEWSAPI_KEY),
    description="Fetch recent news articles about a stock ticker."
)

moving_average_tool = Tool(
    name="Moving Average Calculator",
    func=calculate_moving_average,
    description="Calculate the moving average of a stock over a 5-day window."
)

tools = [stock_data_tool, stock_news_tool, moving_average_tool]

# Set up a prompt template with history
template_with_history = """You are SearchGPT, a professional search engine who provides informative answers to users. Answer the following questions as best you can. You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin! Remember to give detailed, informative answers

Previous conversation history:
{history}

New question: {input}
{agent_scratchpad}"""

# Set up the prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
    template: str
    tools: List[Tool]
    
    def format_messages(self, **kwargs) -> str:
        intermediate_steps = kwargs.pop("intermediate_steps")
        thoughts = ""
        for action, observation in intermediate_steps:
            thoughts += action.log
            thoughts += f"\nObservation: {observation}\nThought: "
            
        kwargs["agent_scratchpad"] = thoughts
        kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
        kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
        formatted = self.template.format(**kwargs)
        return [HumanMessage(content=formatted)]
    
prompt_with_history = CustomPromptTemplate(
    template=template_with_history,
    tools=tools,
    input_variables=["input", "intermediate_steps", "history"]
)

# Custom output parser
class CustomOutputParser(AgentOutputParser):
    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
        if "Final Answer:" in llm_output:
            return AgentFinish(
                return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
                log=llm_output,
            )
        regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
        match = re.search(regex, llm_output, re.DOTALL)
        if not match:
            raise ValueError(f"Could not parse LLM output: `{llm_output}`")
        action = match.group(1).strip()
        action_input = match.group(2)
        return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
    
output_parser = CustomOutputParser()

# Initialize HuggingFace pipeline
llm = HuggingFacePipeline(pipeline=pipe)

# LLM chain
llm_chain = LLMChain(llm=llm, prompt=prompt_with_history)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
    llm_chain=llm_chain, 
    output_parser=output_parser,
    stop=["\nObservation:"], 
    allowed_tools=tool_names
)

memory = ConversationBufferWindowMemory(k=2)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)

# Streamlit app
st.title("Trading Helper Agent")

query = st.text_input("Enter your query:")

if st.button("Submit"):
    if query:
        st.write("Debug: User Query ->", query)
        with st.spinner("Processing..."):
            try:
                # Run the agent and get the response
                response = agent_executor.run(query)  # Correct method is `run()`
                st.success("Response:")
                st.write(response)
            except Exception as e:
                st.error(f"An error occurred: {e}")
                # Log the full LLM output for debugging
                if hasattr(e, "output"):
                    st.write("Raw Output:", e.output)
    else:
        st.warning("Please enter a query.")