Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
from typing import Dict, Union | |
from gliner import GLiNER | |
model = GLiNER.from_pretrained("urchade/gliner_multi-v2.1") # numind/NuNER_Zero | |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1") | |
css = """ | |
h1 { | |
text-align: center; | |
display:block; | |
} | |
""" | |
#define a function to process your input and output | |
def zero_shot(doc, candidates): | |
given_labels = candidates.split(", ") | |
dictionary = classifier(doc, given_labels) | |
labels = dictionary['labels'] | |
scores = dictionary['scores'] | |
return dict(zip(labels, scores)) | |
examples_text = [ | |
[ | |
"Pasar saham ngalaman panurunan nu signifikan akibat kateupastian global.", | |
"ékonomi, pulitik, bisnis, kauangan, téknologi" | |
], | |
[ | |
"I am very happy today but suddenly sad because of the recent news.", | |
"positive, negative, neutral" | |
], | |
[ | |
"I just received the best news ever! I got the job I always wanted!", | |
"joy, sadness, anger, surprise, fear, disgust" | |
], | |
] | |
examples_ner = [ | |
[ | |
"Pada tahun 1945, Indonesia memproklamasikan kemerdekaannya dari penjajahan Belanda. Proklamasi tersebut dibacakan oleh Soekarno dan Mohammad Hatta di Jakarta.", | |
"tahun, negara, tokoh, lokasi", | |
0.3 | |
], | |
[ | |
"Mount Everest is the highest mountain above sea level, located in the Himalayas. It stands at 8,848 meters (29,029 ft) and attracts many climbers.", | |
"location, measurement, person", | |
0.3 | |
], | |
[ | |
"Perusahaan teknologi raksasa, Google, mbukak kantor cabang anyar ing Jakarta ing wulan Januari 2020 kanggo nggedhekake operasine ing Asia Tenggara", | |
"perusahaan, lokasi, wulan, taun", | |
0.3 | |
], | |
] | |
def merge_entities(entities): | |
if not entities: | |
return [] | |
merged = [] | |
current = entities[0] | |
for next_entity in entities[1:]: | |
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): | |
current['word'] += ' ' + next_entity['word'] | |
current['end'] = next_entity['end'] | |
else: | |
merged.append(current) | |
current = next_entity | |
merged.append(current) | |
return merged | |
def ner( | |
text, labels: str, threshold: float, nested_ner: bool | |
) -> Dict[str, Union[str, int, float]]: | |
labels = labels.split(",") | |
r = { | |
"text": text, | |
"entities": [ | |
{ | |
"entity": entity["label"], | |
"word": entity["text"], | |
"start": entity["start"], | |
"end": entity["end"], | |
"score": 0, | |
} | |
for entity in model.predict_entities( | |
text, labels, flat_ner=not nested_ner, threshold=threshold | |
) | |
], | |
} | |
r["entities"] = merge_entities(r["entities"]) | |
return r | |
with gr.Blocks(title="Zero-Shot Demo", css=css) as demo: #, theme=gr.themes.Soft() | |
gr.Markdown( | |
""" | |
# Zero-Shot Model Demo | |
""" | |
) | |
#create input and output objects | |
with gr.Tab("Zero-Shot Text Classification"): | |
gr.Markdown( | |
""" | |
## Zero-Shot Text Classification | |
""" | |
) | |
input1 = gr.Textbox(label="Text", value=examples_text[0][0]) | |
input2 = gr.Textbox(label="Labels",value=examples_text[0][1]) | |
output = gr.Label(label="Output") | |
gui = gr.Interface( | |
# title="Zero-Shot Text Classification", | |
fn=zero_shot, | |
inputs=[input1, input2], | |
outputs=[output] | |
) | |
examples = gr.Examples( | |
examples_text, | |
fn=zero_shot, | |
inputs=[input1, input2], | |
outputs=output, | |
cache_examples=True, | |
) | |
with gr.Tab("Zero-Shot NER"): | |
gr.Markdown( | |
""" | |
## Zero-Shot Named Entity Recognition (NER) | |
""" | |
) | |
input_text = gr.Textbox( | |
value=examples_ner[0][0], label="Text input", placeholder="Enter your text here", lines=3 | |
) | |
with gr.Row() as row: | |
labels = gr.Textbox( | |
value=examples_ner[0][1], | |
label="Labels", | |
placeholder="Enter your labels here (comma separated)", | |
scale=2, | |
) | |
threshold = gr.Slider( | |
0, | |
1, | |
value=examples_ner[0][2], | |
step=0.01, | |
label="Threshold", | |
info="Lower the threshold to increase how many entities get predicted.", | |
scale=1, | |
) | |
output = gr.HighlightedText(label="Predicted Entities") | |
submit_btn = gr.Button("Submit") | |
examples = gr.Examples( | |
examples_ner, | |
fn=ner, | |
inputs=[input_text, labels, threshold], | |
outputs=output, | |
cache_examples=True, | |
) | |
submit_btn.click( | |
fn=ner, inputs=[input_text, labels, threshold], outputs=output | |
) | |
demo.queue() | |
demo.launch(debug=True) |