import streamlit as st from PIL import Image import random import sahi.utils.file import pandas as pd IMAGE_TO_URL = { 'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png', 'plant_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png', 'processing_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/processing-pid.png' } st.set_page_config( page_title="P&ID Object Detection", layout="wide", initial_sidebar_state="expanded" ) st.title('P&ID Object Detection') st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow') st.caption('Developed by Deep Drawings Co.') col1, col2, col3, col4 = st.columns(4) with col1: with st.expander('How to use it'): st.markdown( ''' 1) Upload your P&ID or select example diagrams 📬 2) Set Confidence Threshold 📈 3) Press to Perform Inference 🚀 4) Visualize Model Predictions 🔎 ''' ) st.write('##') col1, col2, col3, col4 = st.columns(4, gap='medium') with col2: st.markdown('##### Input File') # set input image by upload image_file = st.file_uploader("Upload your diagram", type=["pdf"]) # set input images from examples def radio_func(option): option_to_id = { 'factory_pid.png' : 'Factory P&ID', 'plant_pid.png' : 'Plant P&ID', 'processing_pid.png' : 'Processing P&ID', } return option_to_id[option] st.write('##') radio = st.radio( 'Or select from example diagrams', options = ['factory_pid.png', 'plant_pid.png', 'processing_pid.png'], format_func = radio_func, #value = 'factory_pid.png', ) with col3: st.markdown('##### Preview') # visualize input image if image_file is not None: image = Image.open(image_file) else: image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[radio]) st.image(image, use_column_width = True)