Spaces:
Sleeping
Sleeping
Daniel Cerda Escobar
commited on
Commit
Β·
837f8a9
1
Parent(s):
5738820
Update app file
Browse files
app.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import streamlit as st
|
4 |
-
from PIL import Image
|
5 |
import random
|
6 |
import sahi.utils.file
|
7 |
-
|
|
|
|
|
|
|
8 |
from streamlit_image_comparison import image_comparison
|
|
|
9 |
|
10 |
IMAGE_TO_URL = {
|
11 |
'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png',
|
@@ -24,6 +27,17 @@ st.title('P&ID Object Detection')
|
|
24 |
st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow')
|
25 |
st.caption('Developed by Deep Drawings Co.')
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
@st.cache_data(show_spinner=False)
|
28 |
def download_comparison_images():
|
29 |
sahi.utils.file.download_from_url(
|
@@ -61,7 +75,12 @@ col1, col2, col3 = st.columns(3, gap='large')
|
|
61 |
with col1:
|
62 |
st.markdown('##### Input File')
|
63 |
# set input image by upload
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
# set input images from examples
|
66 |
def radio_func(option):
|
67 |
option_to_id = {
|
@@ -78,7 +97,8 @@ with col1:
|
|
78 |
with col2:
|
79 |
st.markdown('##### Preview')
|
80 |
# visualize input image
|
81 |
-
if
|
|
|
82 |
image = Image.open(image_file)
|
83 |
else:
|
84 |
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[radio])
|
@@ -107,12 +127,34 @@ st.write('##')
|
|
107 |
col1, col2, col3 = st.columns([3, 1, 3])
|
108 |
with col2:
|
109 |
submit = st.button("π Perform Prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
st.write('##')
|
112 |
|
113 |
col1, col2, col3 = st.columns([1, 4, 1])
|
114 |
with col2:
|
115 |
-
st.markdown(f"
|
116 |
with st.container(border = True):
|
117 |
static_component = image_comparison(
|
118 |
img1=st.session_state["output_1"],
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import streamlit as st
|
|
|
4 |
import random
|
5 |
import sahi.utils.file
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
from sahi import AutoDetectionModel
|
10 |
from streamlit_image_comparison import image_comparison
|
11 |
+
from ultralyticsplus.hf_utils import download_from_hub
|
12 |
|
13 |
IMAGE_TO_URL = {
|
14 |
'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png',
|
|
|
27 |
st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow')
|
28 |
st.caption('Developed by Deep Drawings Co.')
|
29 |
|
30 |
+
@st.cache_resource(show_spinner=False)
|
31 |
+
def get_model():
|
32 |
+
yolov8_model_path = download_from_hub('DanielCerda/pid_yolov8')
|
33 |
+
detection_model = AutoDetectionModel.from_pretrained(
|
34 |
+
model_type='yolov8',
|
35 |
+
model_path=yolov8_model_path,
|
36 |
+
confidence_threshold=0.75,
|
37 |
+
device="cpu",
|
38 |
+
)
|
39 |
+
return detection_model
|
40 |
+
|
41 |
@st.cache_data(show_spinner=False)
|
42 |
def download_comparison_images():
|
43 |
sahi.utils.file.download_from_url(
|
|
|
75 |
with col1:
|
76 |
st.markdown('##### Input File')
|
77 |
# set input image by upload
|
78 |
+
uploaded_file = st.file_uploader("Upload your diagram", type="pdf")
|
79 |
+
if uploaded_file:
|
80 |
+
temp_dir = tempfile.mkdtemp()
|
81 |
+
path = os.path.join(temp_dir, uploaded_file.name)
|
82 |
+
with open(path, "wb") as f:
|
83 |
+
f.write(uploaded_file.getvalue())
|
84 |
# set input images from examples
|
85 |
def radio_func(option):
|
86 |
option_to_id = {
|
|
|
97 |
with col2:
|
98 |
st.markdown('##### Preview')
|
99 |
# visualize input image
|
100 |
+
if uploaded_file is not None:
|
101 |
+
image_file = convert_pdf_file(path=path)
|
102 |
image = Image.open(image_file)
|
103 |
else:
|
104 |
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[radio])
|
|
|
127 |
col1, col2, col3 = st.columns([3, 1, 3])
|
128 |
with col2:
|
129 |
submit = st.button("π Perform Prediction")
|
130 |
+
|
131 |
+
if submit:
|
132 |
+
# perform prediction
|
133 |
+
with st.spinner(text="Downloading model weight ... "):
|
134 |
+
detection_model = get_model()
|
135 |
+
|
136 |
+
image_size = 1280
|
137 |
+
|
138 |
+
with st.spinner(text="Performing prediction ... "):
|
139 |
+
output_1, output_2 = sahi_yolov8m_inference(
|
140 |
+
image,
|
141 |
+
detection_model,
|
142 |
+
image_size=image_size,
|
143 |
+
slice_height=slice_size,
|
144 |
+
slice_width=slice_size,
|
145 |
+
overlap_height_ratio=overlap_ratio,
|
146 |
+
overlap_width_ratio=overlap_ratio,
|
147 |
+
postprocess_match_threshold=postprocess_match_threshold
|
148 |
+
)
|
149 |
+
|
150 |
+
st.session_state["output_1"] = output_1
|
151 |
+
st.session_state["output_2"] = output_2
|
152 |
|
153 |
st.write('##')
|
154 |
|
155 |
col1, col2, col3 = st.columns([1, 4, 1])
|
156 |
with col2:
|
157 |
+
st.markdown(f"#### Object Detection Result")
|
158 |
with st.container(border = True):
|
159 |
static_component = image_comparison(
|
160 |
img1=st.session_state["output_1"],
|