Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024 DeepSeek. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
from dataclasses import dataclass, field | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
class ModelArgs: | |
codebook_size: int = 16384 | |
codebook_embed_dim: int = 8 | |
codebook_l2_norm: bool = True | |
codebook_show_usage: bool = True | |
commit_loss_beta: float = 0.25 | |
entropy_loss_ratio: float = 0.0 | |
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4]) | |
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4]) | |
z_channels: int = 256 | |
dropout_p: float = 0.0 | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
ch=128, | |
ch_mult=(1, 1, 2, 2, 4), | |
num_res_blocks=2, | |
norm_type="group", | |
dropout=0.0, | |
resamp_with_conv=True, | |
z_channels=256, | |
): | |
super().__init__() | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1) | |
# downsampling | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.conv_blocks = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
conv_block = nn.Module() | |
# res & attn | |
res_block = nn.ModuleList() | |
attn_block = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for _ in range(self.num_res_blocks): | |
res_block.append( | |
ResnetBlock( | |
block_in, block_out, dropout=dropout, norm_type=norm_type | |
) | |
) | |
block_in = block_out | |
if i_level == self.num_resolutions - 1: | |
attn_block.append(AttnBlock(block_in, norm_type)) | |
conv_block.res = res_block | |
conv_block.attn = attn_block | |
# downsample | |
if i_level != self.num_resolutions - 1: | |
conv_block.downsample = Downsample(block_in, resamp_with_conv) | |
self.conv_blocks.append(conv_block) | |
# middle | |
self.mid = nn.ModuleList() | |
self.mid.append( | |
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) | |
) | |
self.mid.append(AttnBlock(block_in, norm_type=norm_type)) | |
self.mid.append( | |
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) | |
) | |
# end | |
self.norm_out = Normalize(block_in, norm_type) | |
self.conv_out = nn.Conv2d( | |
block_in, z_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
h = self.conv_in(x) | |
# downsampling | |
for i_level, block in enumerate(self.conv_blocks): | |
for i_block in range(self.num_res_blocks): | |
h = block.res[i_block](h) | |
if len(block.attn) > 0: | |
h = block.attn[i_block](h) | |
if i_level != self.num_resolutions - 1: | |
h = block.downsample(h) | |
# middle | |
for mid_block in self.mid: | |
h = mid_block(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
z_channels=256, | |
ch=128, | |
ch_mult=(1, 1, 2, 2, 4), | |
num_res_blocks=2, | |
norm_type="group", | |
dropout=0.0, | |
resamp_with_conv=True, | |
out_channels=3, | |
): | |
super().__init__() | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
# z to block_in | |
self.conv_in = nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.ModuleList() | |
self.mid.append( | |
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) | |
) | |
self.mid.append(AttnBlock(block_in, norm_type=norm_type)) | |
self.mid.append( | |
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) | |
) | |
# upsampling | |
self.conv_blocks = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
conv_block = nn.Module() | |
# res & attn | |
res_block = nn.ModuleList() | |
attn_block = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for _ in range(self.num_res_blocks + 1): | |
res_block.append( | |
ResnetBlock( | |
block_in, block_out, dropout=dropout, norm_type=norm_type | |
) | |
) | |
block_in = block_out | |
if i_level == self.num_resolutions - 1: | |
attn_block.append(AttnBlock(block_in, norm_type)) | |
conv_block.res = res_block | |
conv_block.attn = attn_block | |
# downsample | |
if i_level != 0: | |
conv_block.upsample = Upsample(block_in, resamp_with_conv) | |
self.conv_blocks.append(conv_block) | |
# end | |
self.norm_out = Normalize(block_in, norm_type) | |
self.conv_out = nn.Conv2d( | |
block_in, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def last_layer(self): | |
return self.conv_out.weight | |
def forward(self, z): | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
for mid_block in self.mid: | |
h = mid_block(h) | |
# upsampling | |
for i_level, block in enumerate(self.conv_blocks): | |
for i_block in range(self.num_res_blocks + 1): | |
h = block.res[i_block](h) | |
if len(block.attn) > 0: | |
h = block.attn[i_block](h) | |
if i_level != self.num_resolutions - 1: | |
h = block.upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class VectorQuantizer(nn.Module): | |
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage): | |
super().__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.entropy_loss_ratio = entropy_loss_ratio | |
self.l2_norm = l2_norm | |
self.show_usage = show_usage | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
if self.l2_norm: | |
self.embedding.weight.data = F.normalize( | |
self.embedding.weight.data, p=2, dim=-1 | |
) | |
if self.show_usage: | |
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536))) | |
def forward(self, z): | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = torch.einsum("b c h w -> b h w c", z).contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
if self.l2_norm: | |
z = F.normalize(z, p=2, dim=-1) | |
z_flattened = F.normalize(z_flattened, p=2, dim=-1) | |
embedding = F.normalize(self.embedding.weight, p=2, dim=-1) | |
else: | |
embedding = self.embedding.weight | |
d = ( | |
torch.sum(z_flattened**2, dim=1, keepdim=True) | |
+ torch.sum(embedding**2, dim=1) | |
- 2 | |
* torch.einsum( | |
"bd,dn->bn", z_flattened, torch.einsum("n d -> d n", embedding) | |
) | |
) | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = embedding[min_encoding_indices].view(z.shape) | |
perplexity = None | |
min_encodings = None | |
vq_loss = None | |
commit_loss = None | |
entropy_loss = None | |
# compute loss for embedding | |
if self.training: | |
vq_loss = torch.mean((z_q - z.detach()) ** 2) | |
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2) | |
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
z_q = torch.einsum("b h w c -> b c h w", z_q) | |
return ( | |
z_q, | |
(vq_loss, commit_loss, entropy_loss), | |
(perplexity, min_encodings, min_encoding_indices), | |
) | |
def get_codebook_entry(self, indices, shape=None, channel_first=True): | |
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel) | |
if self.l2_norm: | |
embedding = F.normalize(self.embedding.weight, p=2, dim=-1) | |
else: | |
embedding = self.embedding.weight | |
z_q = embedding[indices] # (b*h*w, c) | |
if shape is not None: | |
if channel_first: | |
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1]) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
else: | |
z_q = z_q.view(shape) | |
return z_q | |
class ResnetBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
norm_type="group", | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels, norm_type) | |
self.conv1 = nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.norm2 = Normalize(out_channels, norm_type) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
self.nin_shortcut = nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels, norm_type="group"): | |
super().__init__() | |
self.norm = Normalize(in_channels, norm_type) | |
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.proj_out = nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) # b,hw,c | |
k = k.reshape(b, c, h * w) # b,c,hw | |
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = F.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
def Normalize(in_channels, norm_type="group"): | |
assert norm_type in ["group", "batch"] | |
if norm_type == "group": | |
return nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
elif norm_type == "batch": | |
return nn.SyncBatchNorm(in_channels) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
if x.dtype != torch.float32: | |
x = F.interpolate(x.to(torch.float), scale_factor=2.0, mode="nearest").to( | |
torch.bfloat16 | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0, 1, 0, 1) | |
x = F.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = F.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01): | |
flat_affinity = affinity.reshape(-1, affinity.shape[-1]) | |
flat_affinity /= temperature | |
probs = F.softmax(flat_affinity, dim=-1) | |
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1) | |
if loss_type == "softmax": | |
target_probs = probs | |
else: | |
raise ValueError("Entropy loss {} not supported".format(loss_type)) | |
avg_probs = torch.mean(target_probs, dim=0) | |
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + 1e-5)) | |
sample_entropy = -torch.mean(torch.sum(target_probs * log_probs, dim=-1)) | |
loss = sample_entropy - avg_entropy | |
return loss | |
class VQModel(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
self.config = config | |
self.encoder = Encoder( | |
ch_mult=config.encoder_ch_mult, | |
z_channels=config.z_channels, | |
dropout=config.dropout_p, | |
) | |
self.decoder = Decoder( | |
ch_mult=config.decoder_ch_mult, | |
z_channels=config.z_channels, | |
dropout=config.dropout_p, | |
) | |
self.quantize = VectorQuantizer( | |
config.codebook_size, | |
config.codebook_embed_dim, | |
config.commit_loss_beta, | |
config.entropy_loss_ratio, | |
config.codebook_l2_norm, | |
config.codebook_show_usage, | |
) | |
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1) | |
self.post_quant_conv = nn.Conv2d( | |
config.codebook_embed_dim, config.z_channels, 1 | |
) | |
def encode(self, x): | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
quant, emb_loss, info = self.quantize(h) | |
return quant, emb_loss, info | |
def decode(self, quant): | |
quant = self.post_quant_conv(quant) | |
dec = self.decoder(quant) | |
return dec | |
def decode_code(self, code_b, shape=None, channel_first=True): | |
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first) | |
dec = self.decode(quant_b) | |
return dec | |
def forward(self, input): | |
quant, diff, _ = self.encode(input) | |
dec = self.decode(quant) | |
return dec, diff | |
################################################################################# | |
# VQ Model Configs # | |
################################################################################# | |
def VQ_16(**kwargs): | |
return VQModel( | |
ModelArgs( | |
encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs | |
) | |
) | |
VQ_models = {"VQ-16": VQ_16} | |