Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,632 Bytes
51a7d9e 13880c3 51a7d9e edb9e8a 13880c3 c8e2710 13880c3 51a7d9e 08ececf e339ee0 6342a2c f4e5424 6342a2c f4e5424 6342a2c f4e5424 6342a2c f4e5424 6342a2c f4e5424 6342a2c f4e5424 6342a2c f4e5424 6342a2c e2a3fe7 9811eb9 1854cbf 51a7d9e c701791 51a7d9e 1e18916 c8e2710 c701791 c8e2710 13880c3 e339ee0 ebc31d1 e339ee0 c8e2710 d8a8bf1 e339ee0 13880c3 e4c72cc 08ececf 5062630 c8e2710 e4c72cc 3738ef6 13880c3 659ca36 c8e2710 c701791 7d8fde2 b491fe1 c701791 6342a2c c701791 7d8fde2 c701791 1854cbf c701791 3738ef6 51a7d9e 5062630 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer,
StoppingCriteria,
StoppingCriteriaList
)
MODEL_ID ="Qwen/Qwen2.5-Coder-32B-Instruct-AWQ"
DEFAULT_SYSTEM_PROMPT = """
You are an Advanced AI Coding Assistant, designed to solve complex challenges and deliver efficient, dependable solutions. Follow this structured workflow for every task:
1. Understand: Analyze the problem thoroughly. Identify core objectives, resolve ambiguities, and ask clarifying questions if needed to ensure a complete understanding.
2. Plan: Outline a clear, step-by-step approach, detailing the tools, frameworks, and algorithms required to achieve the solution effectively.
3. Implement: Execute the plan with well-structured, efficient, and well-commented code. Provide a clear explanation of your thought process and the rationale behind key decisions as you proceed.
4. Validate: Test the solution rigorously to ensure accuracy, efficiency, and alignment with best practices. Debug and optimize where necessary.
5. Conclude: Summarize the solution with a clear conclusion, highlighting its effectiveness. Suggest improvements, optimizations, or alternative approaches if applicable.
Guiding Principles:
Use code as a tool for reasoning, with clear and educational explanations.
Prioritize code readability, scalability, and maintainability.
Adapt explanations to the user's skill level to maximize learning value.
Refine solutions iteratively, incorporating feedback or evolving requirements.
"""
CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
return input_ids[0][-1] == tokenizer.eos_token_id
def initialize_model():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="cuda",
#quantization_config=quantization_config,
torch_dtype=torch.float16,
trust_remote_code=True
).to("cuda")
return model, tokenizer
def format_response(text):
return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
.replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
.replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n') \
.replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
.replace("[Verify]", '\n<strong class="special-tag">[Verify]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
# Create conversation history for model
conversation = [{"role": "system", "content": system_prompt}]
for user_msg, bot_msg in chat_history:
conversation.extend([
{"role": "user", "content": user_msg},
{"role": "assistant", "content": bot_msg}
])
conversation.append({"role": "user", "content": message})
# Tokenize input
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Setup streaming
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
stopping_criteria=StoppingCriteriaList([StopOnTokens()])
)
# Start generation thread
Thread(target=model.generate, kwargs=generate_kwargs).start()
# Initialize response buffer
partial_message = ""
new_history = chat_history + [(message, "")]
# Stream response
for new_token in streamer:
partial_message += new_token
formatted = format_response(partial_message)
new_history[-1] = (message, formatted + "▌")
yield new_history
# Final update without cursor
new_history[-1] = (message, format_response(partial_message))
yield new_history
model, tokenizer = initialize_model()
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 align="center">🧠 AI Coding Assistant</h1>
<p align="center">I am here to help</p>
""")
chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
with gr.Accordion("⚙️ Settings", open=False):
system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
temperature = gr.Slider(0, 1, value=0.5, label="Creativity")
max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")
clear = gr.Button("Clear History")
msg.submit(
generate_response,
[msg, chatbot, system_prompt, temperature, max_tokens],
[chatbot],
show_progress=True
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue().launch()
|