File size: 5,632 Bytes
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
c8e2710
 
 
13880c3
51a7d9e
08ececf
e339ee0
6342a2c
 
f4e5424
6342a2c
f4e5424
6342a2c
 
f4e5424
6342a2c
 
f4e5424
6342a2c
 
f4e5424
6342a2c
 
f4e5424
6342a2c
 
 
f4e5424
 
 
 
 
 
 
 
 
6342a2c
 
 
e2a3fe7
9811eb9
1854cbf
 
51a7d9e
c701791
 
 
51a7d9e
1e18916
c8e2710
 
c701791
c8e2710
13880c3
e339ee0
ebc31d1
 
 
 
e339ee0
 
c8e2710
 
d8a8bf1
e339ee0
13880c3
e4c72cc
08ececf
5062630
c8e2710
e4c72cc
3738ef6
13880c3
659ca36
c8e2710
c701791
 
7d8fde2
 
 
b491fe1
c701791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6342a2c
 
c701791
 
 
 
 
 
 
7d8fde2
c701791
 
 
 
 
 
 
 
1854cbf
c701791
 
3738ef6
51a7d9e
5062630
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList
)

MODEL_ID ="Qwen/Qwen2.5-Coder-32B-Instruct-AWQ"

DEFAULT_SYSTEM_PROMPT = """

You are an Advanced AI Coding Assistant, designed to solve complex challenges and deliver efficient, dependable solutions. Follow this structured workflow for every task:

1. Understand: Analyze the problem thoroughly. Identify core objectives, resolve ambiguities, and ask clarifying questions if needed to ensure a complete understanding.


2. Plan: Outline a clear, step-by-step approach, detailing the tools, frameworks, and algorithms required to achieve the solution effectively.


3. Implement: Execute the plan with well-structured, efficient, and well-commented code. Provide a clear explanation of your thought process and the rationale behind key decisions as you proceed.


4. Validate: Test the solution rigorously to ensure accuracy, efficiency, and alignment with best practices. Debug and optimize where necessary.


5. Conclude: Summarize the solution with a clear conclusion, highlighting its effectiveness. Suggest improvements, optimizations, or alternative approaches if applicable.



Guiding Principles:

Use code as a tool for reasoning, with clear and educational explanations.

Prioritize code readability, scalability, and maintainability.

Adapt explanations to the user's skill level to maximize learning value.

Refine solutions iteratively, incorporating feedback or evolving requirements.




"""


CSS = """
.gr-chatbot { min-height: 500px; border-radius: 15px; }
.special-tag { color: #2ecc71; font-weight: 600; }
footer { display: none !important; }
"""

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        return input_ids[0][-1] == tokenizer.eos_token_id

def initialize_model():
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
    )

    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="cuda",
        #quantization_config=quantization_config,
        torch_dtype=torch.float16,
        trust_remote_code=True
    ).to("cuda")

    return model, tokenizer

def format_response(text):
    return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
              .replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
              .replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n') \
              .replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
              .replace("[Verify]", '\n<strong class="special-tag">[Verify]</strong>\n')
@spaces.GPU(duration=360)
def generate_response(message, chat_history, system_prompt, temperature, max_tokens):
    # Create conversation history for model
    conversation = [{"role": "system", "content": system_prompt}]
    for user_msg, bot_msg in chat_history:
        conversation.extend([
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": bot_msg}
        ])
    conversation.append({"role": "user", "content": message})

    # Tokenize input
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    # Setup streaming
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        stopping_criteria=StoppingCriteriaList([StopOnTokens()])
    )

    # Start generation thread
    Thread(target=model.generate, kwargs=generate_kwargs).start()

    # Initialize response buffer
    partial_message = ""
    new_history = chat_history + [(message, "")]
    
    # Stream response
    for new_token in streamer:
        partial_message += new_token
        formatted = format_response(partial_message)
        new_history[-1] = (message, formatted + "▌")
        yield new_history

    # Final update without cursor
    new_history[-1] = (message, format_response(partial_message))
    yield new_history

model, tokenizer = initialize_model()

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    <h1 align="center">🧠 AI Coding Assistant</h1>
    <p align="center">I am here to help</p>
    """)
    
    chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
    msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
    
    with gr.Accordion("⚙️ Settings", open=False):
        system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
        temperature = gr.Slider(0, 1, value=0.5, label="Creativity")
        max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")

    clear = gr.Button("Clear History")
    
    msg.submit(
        generate_response,
        [msg, chatbot, system_prompt, temperature, max_tokens],
        [chatbot],
        show_progress=True
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue().launch()