Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,933 Bytes
9e07bfc 7246acf 5a0008c 3738ef6 13880c3 3738ef6 51a7d9e 13880c3 51a7d9e edb9e8a 13880c3 5a0008c 51a7d9e 13880c3 f3800da e2a3fe7 4ff4f2e 8b5b0c4 6ed6285 5a0008c 13880c3 0b72fd3 51a7d9e 3738ef6 51a7d9e 4b74382 13880c3 0b72fd3 51a7d9e 1e18916 13880c3 5a0008c 13880c3 d8a8bf1 5a0008c 13880c3 a6ea901 5a0008c 13880c3 3738ef6 13880c3 659ca36 1e18916 ab4f4a6 13880c3 1e18916 0b72fd3 ab4f4a6 0b72fd3 ab4f4a6 0b72fd3 9b4f101 0b72fd3 13880c3 3738ef6 0b72fd3 3738ef6 8b5b0c4 639da23 6ed6285 3738ef6 ab4f4a6 3738ef6 13880c3 51a7d9e 3738ef6 13880c3 3738ef6 13880c3 3738ef6 13880c3 1e18916 13880c3 1e18916 3738ef6 1e18916 13880c3 1e18916 3738ef6 edb9e8a 13880c3 1e18916 3738ef6 030c23d 51a7d9e 13880c3 1e18916 3738ef6 0b72fd3 13880c3 ab4f4a6 3738ef6 ab4f4a6 bc05e4d 0b72fd3 c44cbfe 13880c3 0b72fd3 8b5b0c4 0b72fd3 8b5b0c4 0b72fd3 245d041 0b72fd3 6ed6285 0b72fd3 13880c3 0b72fd3 13880c3 0b72fd3 13880c3 3738ef6 51a7d9e 13880c3 3738ef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import subprocess
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
subprocess.run(
'pip install autoawq',
shell=True
)
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextIteratorStreamer
)
from awq import AutoAWQForCausalLM
# Configuration Constants
MODEL_ID = "Qwen/QwQ-32B-Preview"
DEFAULT_SYSTEM_PROMPT ="""
You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""
# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = "Ask me anything! I'll think through it step by step."
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
}
.message-wrap p {
margin-bottom: 1em;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
.custom-tag {
color: #0066cc;
font-weight: bold;
}
.chat-area {
height: 500px !important;
overflow-y: auto !important;
}
"""
def initialize_model():
"""Initialize the model with AWQ configuration"""
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoAWQForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
device_map="cuda",
trust_remote_code=True
)
return model, tokenizer
def format_text(text):
"""Format text with proper spacing and tag highlighting (but keep tags visible)"""
tag_patterns = [
(r'<Thinking>', '\n<Thinking>\n'),
(r'</Thinking>', '\n</Thinking>\n'),
(r'<Critique>', '\n<Critique>\n'),
(r'</Critique>', '\n</Critique>\n'),
(r'<Revising>', '\n<Revising>\n'),
(r'</Revising>', '\n</Revising>\n'),
(r'<Final>', '\n<Final>\n'),
(r'</Final>', '\n</Final>\n')
]
formatted = text
for pattern, replacement in tag_patterns:
formatted = re.sub(pattern, replacement, formatted)
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
return formatted
def format_chat_history(history):
"""Format chat history for display, keeping tags visible"""
formatted = []
for user_msg, assistant_msg in history:
formatted.append(f"User: {user_msg}")
if assistant_msg:
formatted.append(f"Assistant: {assistant_msg}")
return "\n\n".join(formatted)
def create_examples():
"""Create example queries for the UI"""
return [
"Explain the concept of artificial intelligence.",
"How does photosynthesis work?",
"What are the main causes of climate change?",
"Describe the process of protein synthesis.",
"What are the key features of a democratic government?",
"Explain the theory of relativity.",
"How do vaccines work to prevent diseases?",
"What are the major events of World War II?",
"Describe the structure of a human cell.",
"What is the role of DNA in genetics?"
]
@spaces.GPU()
def chat_response(
message: str,
history: list,
chat_display: str,
system_prompt: str,
temperature: float = 0.3,
max_new_tokens: int = 8192,
top_p: float = 0.1,
top_k: int = 45,
penalty: float = 1.2,
):
"""Generate chat responses, keeping tags visible in the output"""
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer}
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
streamer=streamer,
)
buffer = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
history = history + [[message, ""]]
for new_text in streamer:
buffer += new_text
formatted_buffer = format_text(buffer)
history[-1][1] = formatted_buffer
chat_display = format_chat_history(history)
yield history, chat_display
def process_example(example: str) -> tuple:
"""Process example query and return empty history and updated display"""
return [], f"User: {example}\n\n"
def main():
"""Main function to set up and launch the Gradio interface"""
global model, tokenizer
model, tokenizer = initialize_model()
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
with gr.Row():
with gr.Column():
chat_history = gr.State([])
chat_display = gr.TextArea(
value="",
label="Chat History",
interactive=False,
elem_classes=["chat-area"],
)
message = gr.TextArea(
placeholder=PLACEHOLDER,
label="Your message",
lines=3
)
with gr.Row():
submit = gr.Button("Send")
clear = gr.Button("Clear")
with gr.Accordion("⚙️ Advanced Settings", open=False):
system_prompt = gr.TextArea(
value=DEFAULT_SYSTEM_PROMPT,
label="System Prompt",
lines=5,
)
temperature = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
)
max_tokens = gr.Slider(
minimum=128,
maximum=32000,
step=128,
value=8192,
label="Max Tokens",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.8,
label="Top-p",
)
top_k = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=45,
label="Top-k",
)
penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition Penalty",
)
examples = gr.Examples(
examples=create_examples(),
inputs=[message],
outputs=[chat_history, chat_display],
fn=process_example,
cache_examples=False,
)
# Set up event handlers
submit_click = submit.click(
chat_response,
inputs=[
message,
chat_history,
chat_display,
system_prompt,
temperature,
max_tokens,
top_p,
top_k,
penalty,
],
outputs=[chat_history, chat_display],
show_progress=True,
)
message.submit(
chat_response,
inputs=[
message,
chat_history,
chat_display,
system_prompt,
temperature,
max_tokens,
top_p,
top_k,
penalty,
],
outputs=[chat_history, chat_display],
show_progress=True,
)
clear.click(
lambda: ([], ""),
outputs=[chat_history, chat_display],
show_progress=True,
)
submit_click.then(lambda: "", outputs=message)
message.submit(lambda: "", outputs=message)
return demo
if __name__ == "__main__":
demo = main()
demo.launch() |