Cosmos48 commited on
Commit
876a83e
·
verified ·
1 Parent(s): 6c49846

Upload 2 files

Browse files
Files changed (2) hide show
  1. prototype_static.ipynb +0 -0
  2. prototype_static_test.py +91 -0
prototype_static.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
prototype_static_test.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ import numpy as np
4
+ import joblib
5
+ import mediapipe as mp
6
+ from PIL import Image
7
+ import os
8
+ import tempfile
9
+
10
+ # Load the trained MLP Classifier model
11
+ model = joblib.load('Static_Detection/saved_models/mlp_model.joblib')
12
+
13
+ # Loading the class dictionary
14
+ class_names = {i: str(i) for i in range(10)} # For numbers 0-9
15
+ class_names.update({10 + i: chr(97 + i) for i in range(26)}) # For letters a-z
16
+
17
+ # Initialize MediaPipe Hand model
18
+ mp_hands = mp.solutions.hands
19
+ hands = mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5)
20
+
21
+
22
+ def skeletal_image(image_path, shape=(256, 256, 3)):
23
+ image = cv2.imread(image_path)
24
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
25
+ results = hands.process(image_rgb)
26
+ if not results.multi_hand_landmarks:
27
+ return None
28
+ white_background = np.ones(shape, dtype=np.uint8) * 255
29
+ for hand_landmarks in results.multi_hand_landmarks:
30
+ mp.solutions.drawing_utils.draw_landmarks(white_background, hand_landmarks, mp_hands.HAND_CONNECTIONS)
31
+ white_background_bgr = cv2.cvtColor(white_background, cv2.COLOR_RGB2BGR)
32
+ return white_background_bgr
33
+
34
+
35
+ # Function to extract landmarks from an uploaded image
36
+ def extract_landmarks(image_path):
37
+ image = cv2.imread(image_path)
38
+ results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
39
+ if results.multi_hand_landmarks:
40
+ # Extract landmarks
41
+ landmarks = np.array([[lm.x, lm.y, lm.z] for lm in results.multi_hand_landmarks[0].landmark]).flatten()
42
+ return landmarks
43
+ return None
44
+
45
+
46
+
47
+ # Streamlit app
48
+ st.title('Hand Gesture Recognition')
49
+
50
+ # Option for the user to choose the input method
51
+ input_method = st.radio("Choose the input method:", ("Upload an Image", "Use Webcam"))
52
+
53
+ if input_method == "Upload an Image":
54
+ uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
55
+ if uploaded_file is not None:
56
+ uploaded_image = Image.open(uploaded_file).convert('RGB')
57
+ elif input_method == "Use Webcam":
58
+ uploaded_file = st.camera_input("Take a picture")
59
+ if uploaded_file is not None:
60
+ uploaded_image = Image.open(uploaded_file).convert('RGB')
61
+
62
+ if uploaded_file is not None:
63
+ st.image(uploaded_image, caption='Uploaded Image', use_column_width=True)
64
+
65
+ # Save the uploaded or captured image to a temporary file
66
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmpfile:
67
+ uploaded_image.save(tmpfile, format="JPEG")
68
+ tmpfile_path = tmpfile.name
69
+
70
+ try:
71
+ skeletal_img = skeletal_image(tmpfile_path)
72
+ if skeletal_img is not None:
73
+ st.image(skeletal_img, channels="BGR", caption='This processed image contains your hand landmarks')
74
+ processed_image = extract_landmarks(tmpfile_path)
75
+
76
+ if processed_image is not None:
77
+ with st.spinner('Please wait, while the model predicts...'):
78
+ # Reshape the processed_image for the model if necessary
79
+ processed_image = processed_image.reshape(1, -1) # Reshape if your model expects a specific input shape
80
+ predictions = model.predict(processed_image)
81
+ predicted_class_name = class_names[predictions[0]]
82
+
83
+ # Display the prediction
84
+ st.write(f"The predicted ASL sign seems to be {predicted_class_name.upper()}")
85
+ else:
86
+ st.write("No hand landmarks were detected.")
87
+ finally:
88
+ # Ensure the temporary file is deleted even if an error occurs
89
+ os.remove(tmpfile_path)
90
+
91
+