Model uploaded
Browse files- model/flol.py +128 -0
model/flol.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import functools
|
5 |
+
import kornia
|
6 |
+
|
7 |
+
from utils.utils import *
|
8 |
+
|
9 |
+
|
10 |
+
class FLOL(nn.Module):
|
11 |
+
def __init__(self, nf=64):
|
12 |
+
super(FLOL, self).__init__()
|
13 |
+
|
14 |
+
# AMPLITUDE ENHANCEMENT
|
15 |
+
self.AmpNet = nn.Sequential(
|
16 |
+
AmplitudeNet_skip(8),
|
17 |
+
nn.Sigmoid()
|
18 |
+
)
|
19 |
+
|
20 |
+
self.nf = nf
|
21 |
+
ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf=nf)
|
22 |
+
|
23 |
+
self.conv_first_1 = nn.Conv2d(3 * 2, nf, 3, 1, 1, bias=True)
|
24 |
+
self.conv_first_2 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True)
|
25 |
+
self.conv_first_3 = nn.Conv2d(nf, nf, 3, 2, 1, bias=True)
|
26 |
+
|
27 |
+
self.feature_extraction = make_layer(ResidualBlock_noBN_f, 1)
|
28 |
+
self.recon_trunk = make_layer(ResidualBlock_noBN_f, 1)
|
29 |
+
|
30 |
+
self.upconv1 = nn.Conv2d(nf*2, nf * 4, 3, 1, 1, bias=True)
|
31 |
+
self.upconv2 = nn.Conv2d(nf*2, nf * 4, 3, 1, 1, bias=True)
|
32 |
+
self.pixel_shuffle = nn.PixelShuffle(2)
|
33 |
+
self.HRconv = nn.Conv2d(nf*2, nf, 3, 1, 1, bias=True)
|
34 |
+
self.conv_last = nn.Conv2d(nf, 3, 3, 1, 1, bias=True)
|
35 |
+
|
36 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
37 |
+
self.transformer = SFNet(nf, n = 4)
|
38 |
+
self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, 6)
|
39 |
+
|
40 |
+
def get_mask(self,dark): # SNR map
|
41 |
+
|
42 |
+
light = kornia.filters.gaussian_blur2d(dark, (5, 5), (1.5, 1.5))
|
43 |
+
dark = dark[:, 0:1, :, :] * 0.299 + dark[:, 1:2, :, :] * 0.587 + dark[:, 2:3, :, :] * 0.114
|
44 |
+
light = light[:, 0:1, :, :] * 0.299 + light[:, 1:2, :, :] * 0.587 + light[:, 2:3, :, :] * 0.114
|
45 |
+
noise = torch.abs(dark - light)
|
46 |
+
|
47 |
+
mask = torch.div(light, noise + 0.0001)
|
48 |
+
|
49 |
+
batch_size = mask.shape[0]
|
50 |
+
height = mask.shape[2]
|
51 |
+
width = mask.shape[3]
|
52 |
+
mask_max = torch.max(mask.view(batch_size, -1), dim=1)[0]
|
53 |
+
mask_max = mask_max.view(batch_size, 1, 1, 1)
|
54 |
+
mask_max = mask_max.repeat(1, 1, height, width)
|
55 |
+
mask = mask * 1.0 / (mask_max + 0.0001)
|
56 |
+
|
57 |
+
mask = torch.clamp(mask, min=0, max=1.0)
|
58 |
+
return mask.float()
|
59 |
+
|
60 |
+
def forward(self, x, side=False):
|
61 |
+
|
62 |
+
# AMPLITUDE ENHANCEMENT
|
63 |
+
#--------------------------------------------------------Frequency Stage---------------------------------------------------
|
64 |
+
_, _, H, W = x.shape
|
65 |
+
image_fft = torch.fft.fft2(x, norm='backward')
|
66 |
+
mag_image = torch.abs(image_fft)
|
67 |
+
pha_image = torch.angle(image_fft)
|
68 |
+
|
69 |
+
curve_amps = self.AmpNet(x)
|
70 |
+
|
71 |
+
mag_image = mag_image / (curve_amps + 0.00000001) # * d4
|
72 |
+
real_image_enhanced = mag_image * torch.cos(pha_image)
|
73 |
+
imag_image_enhanced = mag_image * torch.sin(pha_image)
|
74 |
+
img_amp_enhanced = torch.fft.ifft2(torch.complex(real_image_enhanced, imag_image_enhanced), s=(H, W),
|
75 |
+
norm='backward').real
|
76 |
+
|
77 |
+
x_center = img_amp_enhanced
|
78 |
+
|
79 |
+
rate = 2 ** 3
|
80 |
+
pad_h = (rate - H % rate) % rate
|
81 |
+
pad_w = (rate - W % rate) % rate
|
82 |
+
if pad_h != 0 or pad_w != 0:
|
83 |
+
x_center = F.pad(x_center, (0, pad_w, 0, pad_h), "reflect")
|
84 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), "reflect")
|
85 |
+
|
86 |
+
#------------------------------------------Spatial Stage---------------------------------------------------------------------
|
87 |
+
|
88 |
+
L1_fea_1 = self.lrelu(self.conv_first_1(torch.cat((x_center,x),dim=1)))
|
89 |
+
L1_fea_2 = self.lrelu(self.conv_first_2(L1_fea_1)) # Encoder
|
90 |
+
L1_fea_3 = self.lrelu(self.conv_first_3(L1_fea_2))
|
91 |
+
|
92 |
+
fea = self.feature_extraction(L1_fea_3)
|
93 |
+
fea_light = self.recon_trunk_light(fea)
|
94 |
+
|
95 |
+
h_feature = fea.shape[2]
|
96 |
+
w_feature = fea.shape[3]
|
97 |
+
mask_image = self.get_mask(x_center) # SNR Map
|
98 |
+
mask = F.interpolate(mask_image, size=[h_feature, w_feature], mode='nearest') # Resize and Normalize SNR map
|
99 |
+
|
100 |
+
fea_unfold = self.transformer(fea)
|
101 |
+
|
102 |
+
channel = fea.shape[1]
|
103 |
+
mask = mask.repeat(1, channel, 1, 1)
|
104 |
+
fea = fea_unfold * (1 - mask) + fea_light * mask # SNR-based Interaction
|
105 |
+
|
106 |
+
out_noise = self.recon_trunk(fea)
|
107 |
+
out_noise = torch.cat([out_noise, L1_fea_3], dim=1)
|
108 |
+
out_noise = self.lrelu(self.pixel_shuffle(self.upconv1(out_noise)))
|
109 |
+
out_noise = torch.cat([out_noise, L1_fea_2], dim=1) # Decoder
|
110 |
+
out_noise = self.lrelu(self.pixel_shuffle(self.upconv2(out_noise)))
|
111 |
+
out_noise = torch.cat([out_noise, L1_fea_1], dim=1)
|
112 |
+
out_noise = self.lrelu(self.HRconv(out_noise))
|
113 |
+
out_noise = self.conv_last(out_noise)
|
114 |
+
out_noise = out_noise + x
|
115 |
+
out_noise = out_noise[:, :, :H, :W]
|
116 |
+
|
117 |
+
if side:
|
118 |
+
return out_noise, x_center #, mag_image, x_center, mask_image
|
119 |
+
else:
|
120 |
+
return out_noise
|
121 |
+
|
122 |
+
|
123 |
+
##############################################################################
|
124 |
+
|
125 |
+
def create_model():
|
126 |
+
|
127 |
+
net = FLOL(nf=16)
|
128 |
+
return net
|