FLOL / utils /utils.py
juaben's picture
Utils uploaded
a791811 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from utils.arch_utils import LayerNorm2d
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class ResidualBlock_noBN(nn.Module):
'''Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock_noBN, self).__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
# initialization
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = F.relu(self.conv1(x), inplace=True)
out = self.conv2(out)
return identity + out
class ResidualBlock(nn.Module):
'''Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.bn = nn.BatchNorm2d(nf)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
# initialization
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = F.relu(self.bn(self.conv1(x)), inplace=True)
out = self.conv2(out)
return identity + out
###########################################################################################################
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class SGE(nn.Module):
def __init__(self, dw_channel):
super().__init__()
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
x1 = self.dwc(x1)
return x1 * x2
class SpaBlock(nn.Module):
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2, drop_out_rate=0.):
super(SpaBlock, self).__init__()
dw_channel = nc * DW_Expand
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True) # the dconv
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
self.sca = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * nc
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(nc)
self.norm2 = LayerNorm2d(nc)
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
def forward(self, x):
x = self.norm1(x) # size [B, C, H, W]
x = self.conv1(x) # size [B, 2*C, H, W]
x = self.conv2(x) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = x * self.sca(x) # size [B, C, H, W]
x = self.conv3(x) # size [B, C, H, W]
x = self.dropout1(x)
y = x + x * self.beta # size [B, C, H, W]
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = self.conv5(x) # size [B, C, H, W]
x = self.dropout2(x)
return y + x * self.gamma
class FreBlock(nn.Module):
def __init__(self, nc):
super(FreBlock, self).__init__()
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
self.process1 = nn.Sequential(
nn.Conv2d(nc, nc, 1, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(nc, nc, 1, 1, 0))
self.process2 = nn.Sequential(
nn.Conv2d(nc, nc, 1, 1, 0),
nn.LeakyReLU(0.1, inplace=True),
nn.Conv2d(nc, nc, 1, 1, 0))
def forward(self, x):
_, _, H, W = x.shape
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
mag = torch.abs(x_freq)
pha = torch.angle(x_freq)
mag = self.process1(mag)
pha = self.process2(pha)
real = mag * torch.cos(pha)
imag = mag * torch.sin(pha)
x_out = torch.complex(real, imag)
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
return x_out+x
class SFBlock(nn.Module):
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2):
super(SFBlock, self).__init__()
dw_channel = nc * DW_Expand
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True) # the dconv
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.fatt = FreBlock(dw_channel // 2)
self.sge = SGE(dw_channel)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * nc
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(nc)
self.norm2 = LayerNorm2d(nc)
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True)
def forward(self, x):
x = self.norm1(x) # size [B, C, H, W]
x = self.conv1(x) # size [B, 2*C, H, W]
x = self.conv2(x) # size [B, 2*C, H, W]
x = self.sge(x) # size [B, C, H, W]
x = self.fatt(x)
x = self.conv3(x) # size [B, C, H, W]
y = x + x * self.beta # size [B, C, H, W]
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
x = self.sg(x) # size [B, C, H, W]
x = self.conv5(x) # size [B, C, H, W]
return y + x * self.gamma
class ProcessBlock(nn.Module):
def __init__(self, in_nc, spatial = True):
super(ProcessBlock,self).__init__()
self.spatial = spatial
self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
self.frequency_process = FreBlock(in_nc)
self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)
def forward(self, x):
xori = x
x_freq = self.frequency_process(x)
x_spatial = self.spatial_process(x)
xcat = torch.cat([x_spatial,x_freq],1)
x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)
return x_out+xori
class SFNet(nn.Module):
def __init__(self, nc,n=5):
super(SFNet,self).__init__()
self.list_block = list()
for index in range(n):
self.list_block.append(ProcessBlock(nc,spatial=False))
self.block = nn.Sequential(*self.list_block)
def forward(self, x):
x_ori = x
x_out = self.block(x_ori)
xout = x_ori + x_out
return xout
class AmplitudeNet_skip(nn.Module):
def __init__(self, nc,n=1):
super(AmplitudeNet_skip,self).__init__()
self.conv_init = nn.Conv2d(3, nc, 1, 1, 0)
self.conv1 = SFBlock (nc)
self.conv2 = SFBlock (nc)
self.conv3 = SFBlock (nc)
self.conv_out = nn.Conv2d(nc, 3, 1, 1, 0)
def forward(self, x):
x_lr = F.interpolate(x, scale_factor=0.5, mode='bilinear') # Resize and Normalize SNR map
x_lr = self.conv_init(x_lr)
x_lr = self.conv1(x_lr)
x_lr = self.conv2(x_lr)
x_lr = self.conv3(x_lr)
x_lr = self.conv_out(x_lr)
xout = F.interpolate(x_lr, scale_factor=2, mode='bilinear') # Resize and Normalize SNR map
return xout
###########################################################################################################
class SG(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class SGE(nn.Module):
def __init__(self, dw_channel):
super().__init__()
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True)
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
x1 = self.dwc(x1)
return x1 * x2