|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.init as init |
|
|
|
from utils.arch_utils import LayerNorm2d |
|
|
|
def initialize_weights(net_l, scale=1): |
|
if not isinstance(net_l, list): |
|
net_l = [net_l] |
|
for net in net_l: |
|
for m in net.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, a=0, mode='fan_in') |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
init.kaiming_normal_(m.weight, a=0, mode='fan_in') |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
|
|
def make_layer(block, n_layers): |
|
layers = [] |
|
for _ in range(n_layers): |
|
layers.append(block()) |
|
return nn.Sequential(*layers) |
|
|
|
|
|
class ResidualBlock_noBN(nn.Module): |
|
'''Residual block w/o BN |
|
---Conv-ReLU-Conv-+- |
|
|________________| |
|
''' |
|
|
|
def __init__(self, nf=64): |
|
super(ResidualBlock_noBN, self).__init__() |
|
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
|
|
|
|
initialize_weights([self.conv1, self.conv2], 0.1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = F.relu(self.conv1(x), inplace=True) |
|
out = self.conv2(out) |
|
return identity + out |
|
|
|
class ResidualBlock(nn.Module): |
|
'''Residual block w/o BN |
|
---Conv-ReLU-Conv-+- |
|
|________________| |
|
''' |
|
|
|
def __init__(self, nf=64): |
|
super(ResidualBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
self.bn = nn.BatchNorm2d(nf) |
|
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) |
|
|
|
|
|
initialize_weights([self.conv1, self.conv2], 0.1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = F.relu(self.bn(self.conv1(x)), inplace=True) |
|
out = self.conv2(out) |
|
return identity + out |
|
|
|
|
|
|
|
|
|
class SimpleGate(nn.Module): |
|
def forward(self, x): |
|
x1, x2 = x.chunk(2, dim=1) |
|
return x1 * x2 |
|
|
|
class SGE(nn.Module): |
|
def __init__(self, dw_channel): |
|
super().__init__() |
|
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True) |
|
def forward(self, x): |
|
x1, x2 = x.chunk(2, dim=1) |
|
x1 = self.dwc(x1) |
|
return x1 * x2 |
|
|
|
class SpaBlock(nn.Module): |
|
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2, drop_out_rate=0.): |
|
super(SpaBlock, self).__init__() |
|
dw_channel = nc * DW_Expand |
|
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, |
|
bias=True) |
|
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
|
|
self.sca = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, |
|
groups=1, bias=True), |
|
) |
|
|
|
|
|
self.sg = SimpleGate() |
|
|
|
ffn_channel = FFN_Expand * nc |
|
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
self.norm1 = LayerNorm2d(nc) |
|
self.norm2 = LayerNorm2d(nc) |
|
|
|
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() |
|
|
|
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) |
|
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) |
|
|
|
def forward(self, x): |
|
|
|
x = self.norm1(x) |
|
|
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.sg(x) |
|
x = x * self.sca(x) |
|
x = self.conv3(x) |
|
|
|
x = self.dropout1(x) |
|
|
|
y = x + x * self.beta |
|
|
|
x = self.conv4(self.norm2(y)) |
|
x = self.sg(x) |
|
x = self.conv5(x) |
|
|
|
x = self.dropout2(x) |
|
|
|
return y + x * self.gamma |
|
|
|
class FreBlock(nn.Module): |
|
def __init__(self, nc): |
|
super(FreBlock, self).__init__() |
|
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0) |
|
self.process1 = nn.Sequential( |
|
nn.Conv2d(nc, nc, 1, 1, 0), |
|
nn.LeakyReLU(0.1, inplace=True), |
|
nn.Conv2d(nc, nc, 1, 1, 0)) |
|
self.process2 = nn.Sequential( |
|
nn.Conv2d(nc, nc, 1, 1, 0), |
|
nn.LeakyReLU(0.1, inplace=True), |
|
nn.Conv2d(nc, nc, 1, 1, 0)) |
|
|
|
def forward(self, x): |
|
_, _, H, W = x.shape |
|
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward') |
|
mag = torch.abs(x_freq) |
|
pha = torch.angle(x_freq) |
|
mag = self.process1(mag) |
|
pha = self.process2(pha) |
|
real = mag * torch.cos(pha) |
|
imag = mag * torch.sin(pha) |
|
x_out = torch.complex(real, imag) |
|
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward') |
|
|
|
return x_out+x |
|
|
|
|
|
class SFBlock(nn.Module): |
|
def __init__(self, nc, DW_Expand = 2, FFN_Expand=2): |
|
super(SFBlock, self).__init__() |
|
dw_channel = nc * DW_Expand |
|
self.conv1 = nn.Conv2d(in_channels=nc, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, |
|
bias=True) |
|
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
self.fatt = FreBlock(dw_channel // 2) |
|
self.sge = SGE(dw_channel) |
|
|
|
|
|
self.sg = SimpleGate() |
|
|
|
ffn_channel = FFN_Expand * nc |
|
self.conv4 = nn.Conv2d(in_channels=nc, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=nc, kernel_size=1, padding=0, stride=1, groups=1, bias=True) |
|
|
|
self.norm1 = LayerNorm2d(nc) |
|
self.norm2 = LayerNorm2d(nc) |
|
|
|
self.beta = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) |
|
self.gamma = nn.Parameter(torch.zeros((1, nc, 1, 1)), requires_grad=True) |
|
|
|
def forward(self, x): |
|
|
|
x = self.norm1(x) |
|
|
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.sge(x) |
|
|
|
x = self.fatt(x) |
|
x = self.conv3(x) |
|
|
|
y = x + x * self.beta |
|
|
|
x = self.conv4(self.norm2(y)) |
|
x = self.sg(x) |
|
x = self.conv5(x) |
|
|
|
return y + x * self.gamma |
|
|
|
class ProcessBlock(nn.Module): |
|
def __init__(self, in_nc, spatial = True): |
|
super(ProcessBlock,self).__init__() |
|
self.spatial = spatial |
|
self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity() |
|
self.frequency_process = FreBlock(in_nc) |
|
self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0) |
|
|
|
def forward(self, x): |
|
xori = x |
|
x_freq = self.frequency_process(x) |
|
x_spatial = self.spatial_process(x) |
|
xcat = torch.cat([x_spatial,x_freq],1) |
|
x_out = self.cat(xcat) if self.spatial else self.cat(x_freq) |
|
|
|
return x_out+xori |
|
|
|
class SFNet(nn.Module): |
|
|
|
def __init__(self, nc,n=5): |
|
super(SFNet,self).__init__() |
|
|
|
self.list_block = list() |
|
for index in range(n): |
|
|
|
self.list_block.append(ProcessBlock(nc,spatial=False)) |
|
|
|
self.block = nn.Sequential(*self.list_block) |
|
|
|
def forward(self, x): |
|
|
|
x_ori = x |
|
x_out = self.block(x_ori) |
|
xout = x_ori + x_out |
|
|
|
return xout |
|
|
|
class AmplitudeNet_skip(nn.Module): |
|
def __init__(self, nc,n=1): |
|
super(AmplitudeNet_skip,self).__init__() |
|
|
|
self.conv_init = nn.Conv2d(3, nc, 1, 1, 0) |
|
self.conv1 = SFBlock (nc) |
|
self.conv2 = SFBlock (nc) |
|
self.conv3 = SFBlock (nc) |
|
self.conv_out = nn.Conv2d(nc, 3, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
|
|
x_lr = F.interpolate(x, scale_factor=0.5, mode='bilinear') |
|
|
|
x_lr = self.conv_init(x_lr) |
|
x_lr = self.conv1(x_lr) |
|
x_lr = self.conv2(x_lr) |
|
x_lr = self.conv3(x_lr) |
|
x_lr = self.conv_out(x_lr) |
|
|
|
xout = F.interpolate(x_lr, scale_factor=2, mode='bilinear') |
|
|
|
return xout |
|
|
|
|
|
|
|
|
|
class SG(nn.Module): |
|
def forward(self, x): |
|
x1, x2 = x.chunk(2, dim=1) |
|
return x1 * x2 |
|
|
|
|
|
class SGE(nn.Module): |
|
def __init__(self, dw_channel): |
|
super().__init__() |
|
self.dwc = nn.Conv2d(in_channels=dw_channel //2, out_channels=dw_channel//2, kernel_size=3, padding=1, stride=1, groups=dw_channel//2, bias=True) |
|
def forward(self, x): |
|
x1, x2 = x.chunk(2, dim=1) |
|
x1 = self.dwc(x1) |
|
return x1 * x2 |