Spaces:
Running
Running
add archs folder
Browse files- archs/__init__.py +4 -0
- archs/arch_util.py +229 -0
- archs/arch_util_freq.py +149 -0
- archs/nafnet_utils/arch_model.py +301 -0
- archs/nafnet_utils/arch_util.py +343 -0
- archs/nafnet_utils/local_arch.py +92 -0
- archs/network.py +143 -0
archs/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .nafnet_utils.arch_model import NAFNet
|
2 |
+
from .network import Network
|
3 |
+
|
4 |
+
__all__ = ['NAFNet','Network']
|
archs/arch_util.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.init as init
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
try:
|
7 |
+
from .nafnet_utils.arch_util import LayerNorm2d
|
8 |
+
from .nafnet_utils.arch_model import SimpleGate
|
9 |
+
except:
|
10 |
+
from nafnet_utils.arch_util import LayerNorm2d
|
11 |
+
from nafnet_utils.arch_model import SimpleGate
|
12 |
+
|
13 |
+
'''
|
14 |
+
https://github.com/wangchx67/FourLLIE.git
|
15 |
+
'''
|
16 |
+
|
17 |
+
def initialize_weights(net_l, scale=1):
|
18 |
+
if not isinstance(net_l, list):
|
19 |
+
net_l = [net_l]
|
20 |
+
for net in net_l:
|
21 |
+
for m in net.modules():
|
22 |
+
if isinstance(m, nn.Conv2d):
|
23 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
24 |
+
m.weight.data *= scale # for residual block
|
25 |
+
if m.bias is not None:
|
26 |
+
m.bias.data.zero_()
|
27 |
+
elif isinstance(m, nn.Linear):
|
28 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
29 |
+
m.weight.data *= scale
|
30 |
+
if m.bias is not None:
|
31 |
+
m.bias.data.zero_()
|
32 |
+
elif isinstance(m, nn.BatchNorm2d):
|
33 |
+
init.constant_(m.weight, 1)
|
34 |
+
init.constant_(m.bias.data, 0.0)
|
35 |
+
|
36 |
+
|
37 |
+
def make_layer(block, n_layers):
|
38 |
+
layers = []
|
39 |
+
for _ in range(n_layers):
|
40 |
+
layers.append(block())
|
41 |
+
return nn.Sequential(*layers)
|
42 |
+
|
43 |
+
|
44 |
+
class ResidualBlock_noBN(nn.Module):
|
45 |
+
'''Residual block w/o BN
|
46 |
+
---Conv-ReLU-Conv-+-
|
47 |
+
|________________|
|
48 |
+
'''
|
49 |
+
|
50 |
+
def __init__(self, nf=64):
|
51 |
+
super(ResidualBlock_noBN, self).__init__()
|
52 |
+
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
53 |
+
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
54 |
+
|
55 |
+
# initialization
|
56 |
+
initialize_weights([self.conv1, self.conv2], 0.1)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
identity = x
|
60 |
+
out = F.relu(self.conv1(x), inplace=True)
|
61 |
+
out = self.conv2(out)
|
62 |
+
return identity + out
|
63 |
+
|
64 |
+
class SpaBlock(nn.Module):
|
65 |
+
def __init__(self, nc):
|
66 |
+
super(SpaBlock, self).__init__()
|
67 |
+
self.block = nn.Sequential(
|
68 |
+
nn.Conv2d(nc,nc,3,1,1),
|
69 |
+
nn.LeakyReLU(0.1,inplace=True),
|
70 |
+
nn.Conv2d(nc, nc, 3, 1, 1),
|
71 |
+
nn.LeakyReLU(0.1, inplace=True))
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
return x+self.block(x)
|
75 |
+
|
76 |
+
class FreBlock(nn.Module):
|
77 |
+
def __init__(self, nc):
|
78 |
+
super(FreBlock, self).__init__()
|
79 |
+
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
|
80 |
+
self.process1 = nn.Sequential(
|
81 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
82 |
+
nn.LeakyReLU(0.1, inplace=True),
|
83 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
84 |
+
self.process2 = nn.Sequential(
|
85 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
86 |
+
nn.LeakyReLU(0.1, inplace=True),
|
87 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
_, _, H, W = x.shape
|
91 |
+
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
|
92 |
+
mag = torch.abs(x_freq)
|
93 |
+
pha = torch.angle(x_freq)
|
94 |
+
mag = self.process1(mag)
|
95 |
+
pha = self.process2(pha)
|
96 |
+
real = mag * torch.cos(pha)
|
97 |
+
imag = mag * torch.sin(pha)
|
98 |
+
x_out = torch.complex(real, imag)
|
99 |
+
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
|
100 |
+
|
101 |
+
return x_out+x
|
102 |
+
|
103 |
+
class ProcessBlock(nn.Module):
|
104 |
+
def __init__(self, in_nc, spatial = True):
|
105 |
+
super(ProcessBlock,self).__init__()
|
106 |
+
self.spatial = spatial
|
107 |
+
self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
|
108 |
+
self.frequency_process = FreBlock(in_nc)
|
109 |
+
self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
xori = x
|
113 |
+
x_freq = self.frequency_process(x)
|
114 |
+
x_spatial = self.spatial_process(x)
|
115 |
+
xcat = torch.cat([x_spatial,x_freq],1)
|
116 |
+
x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)
|
117 |
+
|
118 |
+
return x_out+xori
|
119 |
+
|
120 |
+
class Attention_Light(nn.Module):
|
121 |
+
|
122 |
+
def __init__(self, img_channels = 3, width = 16, spatial = False):
|
123 |
+
super(Attention_Light, self).__init__()
|
124 |
+
self.block = nn.Sequential(
|
125 |
+
nn.Conv2d(in_channels = img_channels, out_channels = width//2, kernel_size = 1, padding = 0, stride = 1, groups = 1, bias = True),
|
126 |
+
ProcessBlock(in_nc = width //2, spatial = spatial),
|
127 |
+
nn.Conv2d(in_channels = width//2, out_channels = width, kernel_size = 1, padding = 0, stride = 1, groups = 1, bias = True),
|
128 |
+
ProcessBlock(in_nc = width, spatial = spatial),
|
129 |
+
nn.Conv2d(in_channels = width, out_channels = width, kernel_size = 1, padding = 0, stride = 1, groups = 1, bias = True),
|
130 |
+
ProcessBlock(in_nc=width, spatial = spatial),
|
131 |
+
nn.Sigmoid()
|
132 |
+
)
|
133 |
+
def forward(self, input):
|
134 |
+
return self.block(input)
|
135 |
+
|
136 |
+
class Branch(nn.Module):
|
137 |
+
'''
|
138 |
+
Branch that lasts lonly the dilated convolutions
|
139 |
+
'''
|
140 |
+
def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False):
|
141 |
+
super().__init__()
|
142 |
+
self.dw_channel = DW_Expand * c
|
143 |
+
self.branch = nn.Sequential(
|
144 |
+
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw
|
145 |
+
nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1),
|
146 |
+
nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel,
|
147 |
+
bias=True, dilation = dilation) # the dconv
|
148 |
+
)
|
149 |
+
def forward(self, input):
|
150 |
+
return self.branch(input)
|
151 |
+
|
152 |
+
class EBlock(nn.Module):
|
153 |
+
'''
|
154 |
+
Change this block using Branch
|
155 |
+
'''
|
156 |
+
|
157 |
+
def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False):
|
158 |
+
super().__init__()
|
159 |
+
#we define the 2 branches
|
160 |
+
|
161 |
+
self.branches = nn.ModuleList()
|
162 |
+
for dilation in dilations:
|
163 |
+
self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
|
164 |
+
|
165 |
+
assert len(dilations) == len(self.branches)
|
166 |
+
self.dw_channel = DW_Expand * c
|
167 |
+
self.sca = nn.Sequential(
|
168 |
+
nn.AdaptiveAvgPool2d(1),
|
169 |
+
nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
170 |
+
groups=1, bias=True, dilation = 1),
|
171 |
+
)
|
172 |
+
self.sg1 = SimpleGate()
|
173 |
+
self.sg2 = SimpleGate()
|
174 |
+
self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
|
175 |
+
ffn_channel = FFN_Expand * c
|
176 |
+
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
177 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
178 |
+
|
179 |
+
self.norm1 = LayerNorm2d(c)
|
180 |
+
self.norm2 = LayerNorm2d(c)
|
181 |
+
|
182 |
+
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
183 |
+
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
184 |
+
|
185 |
+
def forward(self, inp):
|
186 |
+
|
187 |
+
y = inp
|
188 |
+
x = self.norm1(inp)
|
189 |
+
z = 0
|
190 |
+
for branch in self.branches:
|
191 |
+
z += branch(x)
|
192 |
+
|
193 |
+
z = self.sg1(z)
|
194 |
+
x = self.sca(z) * z
|
195 |
+
x = self.conv3(x)
|
196 |
+
y = inp + self.beta * x
|
197 |
+
#second step
|
198 |
+
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
|
199 |
+
x = self.sg2(x) # size [B, C, H, W]
|
200 |
+
x = self.conv5(x) # size [B, C, H, W]
|
201 |
+
|
202 |
+
return y + x * self.gamma
|
203 |
+
|
204 |
+
#----------------------------------------------------------------------------------------------
|
205 |
+
if __name__ == '__main__':
|
206 |
+
|
207 |
+
img_channel = 3
|
208 |
+
width = 32
|
209 |
+
|
210 |
+
enc_blks = [1, 2, 3]
|
211 |
+
middle_blk_num = 3
|
212 |
+
dec_blks = [3, 1, 1]
|
213 |
+
dilations = [1, 4, 9]
|
214 |
+
extra_depth_wise = False
|
215 |
+
|
216 |
+
# net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
|
217 |
+
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
|
218 |
+
net = EBlock(c = img_channel,
|
219 |
+
dilations = dilations,
|
220 |
+
extra_depth_wise=extra_depth_wise)
|
221 |
+
|
222 |
+
inp_shape = (3, 256, 256)
|
223 |
+
|
224 |
+
from ptflops import get_model_complexity_info
|
225 |
+
|
226 |
+
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)
|
227 |
+
|
228 |
+
|
229 |
+
print(macs, params)
|
archs/arch_util_freq.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.init as init
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
try:
|
7 |
+
from .nafnet_utils.arch_util import LayerNorm2d
|
8 |
+
from .nafnet_utils.arch_model import SimpleGate
|
9 |
+
except:
|
10 |
+
from nafnet_utils.arch_util import LayerNorm2d
|
11 |
+
from nafnet_utils.arch_model import SimpleGate
|
12 |
+
|
13 |
+
'''
|
14 |
+
https://github.com/wangchx67/FourLLIE.git
|
15 |
+
'''
|
16 |
+
|
17 |
+
def initialize_weights(net_l, scale=1):
|
18 |
+
if not isinstance(net_l, list):
|
19 |
+
net_l = [net_l]
|
20 |
+
for net in net_l:
|
21 |
+
for m in net.modules():
|
22 |
+
if isinstance(m, nn.Conv2d):
|
23 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
24 |
+
m.weight.data *= scale # for residual block
|
25 |
+
if m.bias is not None:
|
26 |
+
m.bias.data.zero_()
|
27 |
+
elif isinstance(m, nn.Linear):
|
28 |
+
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
29 |
+
m.weight.data *= scale
|
30 |
+
if m.bias is not None:
|
31 |
+
m.bias.data.zero_()
|
32 |
+
elif isinstance(m, nn.BatchNorm2d):
|
33 |
+
init.constant_(m.weight, 1)
|
34 |
+
init.constant_(m.bias.data, 0.0)
|
35 |
+
|
36 |
+
class FreNAFBlock(nn.Module):
|
37 |
+
|
38 |
+
def __init__(self, nc, expand = 2):
|
39 |
+
super(FreNAFBlock, self).__init__()
|
40 |
+
self.process1 = nn.Sequential(
|
41 |
+
nn.Conv2d(nc, expand * nc, 1, 1, 0),
|
42 |
+
nn.LeakyReLU(0.1, inplace=True),
|
43 |
+
nn.Conv2d(expand * nc, nc, 1, 1, 0))
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
_, _, H, W = x.shape
|
47 |
+
x_freq = torch.fft.rfft2(x, norm='backward')
|
48 |
+
mag = torch.abs(x_freq)
|
49 |
+
pha = torch.angle(x_freq)
|
50 |
+
mag = self.process1(mag)
|
51 |
+
real = mag * torch.cos(pha)
|
52 |
+
imag = mag * torch.sin(pha)
|
53 |
+
x_out = torch.complex(real, imag)
|
54 |
+
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
|
55 |
+
return x_out
|
56 |
+
|
57 |
+
# ------------------------------------------------------------------------------------------------
|
58 |
+
|
59 |
+
class Branch(nn.Module):
|
60 |
+
'''
|
61 |
+
Branch that lasts lonly the dilated convolutions
|
62 |
+
'''
|
63 |
+
def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False):
|
64 |
+
super().__init__()
|
65 |
+
self.dw_channel = DW_Expand * c
|
66 |
+
self.branch = nn.Sequential(
|
67 |
+
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw
|
68 |
+
nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1),
|
69 |
+
nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel,
|
70 |
+
bias=True, dilation = dilation) # the dconv
|
71 |
+
)
|
72 |
+
def forward(self, input):
|
73 |
+
return self.branch(input)
|
74 |
+
|
75 |
+
class EBlock_freq(nn.Module):
|
76 |
+
'''
|
77 |
+
Change this block using Branch
|
78 |
+
'''
|
79 |
+
|
80 |
+
def __init__(self, c, DW_Expand=2, dilations = [1], extra_depth_wise = False):
|
81 |
+
super().__init__()
|
82 |
+
#we define the 2 branches
|
83 |
+
|
84 |
+
self.branches = nn.ModuleList()
|
85 |
+
for dilation in dilations:
|
86 |
+
self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
|
87 |
+
|
88 |
+
assert len(dilations) == len(self.branches)
|
89 |
+
self.dw_channel = DW_Expand * c
|
90 |
+
self.sca = nn.Sequential(
|
91 |
+
nn.AdaptiveAvgPool2d(1),
|
92 |
+
nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
93 |
+
groups=1, bias=True, dilation = 1),
|
94 |
+
)
|
95 |
+
self.sg1 = SimpleGate()
|
96 |
+
self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
|
97 |
+
# second step
|
98 |
+
|
99 |
+
self.norm1 = LayerNorm2d(c)
|
100 |
+
self.norm2 = LayerNorm2d(c)
|
101 |
+
self.freq = FreNAFBlock(nc = c, expand=2)
|
102 |
+
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
103 |
+
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
104 |
+
|
105 |
+
def forward(self, inp):
|
106 |
+
|
107 |
+
y = inp
|
108 |
+
x = self.norm1(inp)
|
109 |
+
z = 0
|
110 |
+
for branch in self.branches:
|
111 |
+
z += branch(x)
|
112 |
+
|
113 |
+
z = self.sg1(z)
|
114 |
+
x = self.sca(z) * z
|
115 |
+
x = self.conv3(x)
|
116 |
+
y = inp + self.beta * x
|
117 |
+
#second step
|
118 |
+
x_step2 = self.norm2(y) # size [B, 2*C, H, W]
|
119 |
+
x_freq = self.freq(x_step2) # size [B, C, H, W]
|
120 |
+
x = y * x_freq
|
121 |
+
|
122 |
+
return y + x * self.gamma
|
123 |
+
|
124 |
+
#----------------------------------------------------------------------------------------------
|
125 |
+
if __name__ == '__main__':
|
126 |
+
|
127 |
+
img_channel = 128
|
128 |
+
width = 32
|
129 |
+
|
130 |
+
enc_blks = [1, 2, 3]
|
131 |
+
middle_blk_num = 3
|
132 |
+
dec_blks = [3, 1, 1]
|
133 |
+
dilations = [1, 4, 9]
|
134 |
+
extra_depth_wise = True
|
135 |
+
|
136 |
+
# net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
|
137 |
+
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
|
138 |
+
net = EBlock(c = img_channel,
|
139 |
+
dilations = dilations,
|
140 |
+
extra_depth_wise=extra_depth_wise)
|
141 |
+
|
142 |
+
inp_shape = (128, 32, 32)
|
143 |
+
|
144 |
+
from ptflops import get_model_complexity_info
|
145 |
+
|
146 |
+
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)
|
147 |
+
|
148 |
+
|
149 |
+
print(macs, params)
|
archs/nafnet_utils/arch_model.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
try:
|
6 |
+
from .arch_util import LayerNorm2d
|
7 |
+
from .local_arch import Local_Base
|
8 |
+
except:
|
9 |
+
from arch_util import LayerNorm2d
|
10 |
+
from local_arch import Local_Base
|
11 |
+
|
12 |
+
|
13 |
+
class SimpleGate(nn.Module):
|
14 |
+
def forward(self, x):
|
15 |
+
x1, x2 = x.chunk(2, dim=1)
|
16 |
+
return x1 * x2
|
17 |
+
|
18 |
+
class NAFBlock(nn.Module):
|
19 |
+
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
|
20 |
+
super().__init__()
|
21 |
+
dw_channel = c * DW_Expand
|
22 |
+
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
23 |
+
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
|
24 |
+
bias=True) # the dconv
|
25 |
+
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
26 |
+
|
27 |
+
# Simplified Channel Attention
|
28 |
+
self.sca = nn.Sequential(
|
29 |
+
nn.AdaptiveAvgPool2d(1),
|
30 |
+
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
31 |
+
groups=1, bias=True),
|
32 |
+
)
|
33 |
+
|
34 |
+
# SimpleGate
|
35 |
+
self.sg = SimpleGate()
|
36 |
+
|
37 |
+
ffn_channel = FFN_Expand * c
|
38 |
+
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
39 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
40 |
+
|
41 |
+
self.norm1 = LayerNorm2d(c)
|
42 |
+
self.norm2 = LayerNorm2d(c)
|
43 |
+
|
44 |
+
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
45 |
+
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
46 |
+
|
47 |
+
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
48 |
+
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
49 |
+
|
50 |
+
def forward(self, inp):
|
51 |
+
x = inp # size [B, C, H, W]
|
52 |
+
|
53 |
+
x = self.norm1(x) # size [B, C, H, W]
|
54 |
+
|
55 |
+
x = self.conv1(x) # size [B, 2*C, H, W]
|
56 |
+
x = self.conv2(x) # size [B, 2*C, H, W]
|
57 |
+
x = self.sg(x) # size [B, C, H, W]
|
58 |
+
x = x * self.sca(x) # size [B, C, H, W]
|
59 |
+
x = self.conv3(x) # size [B, C, H, W]
|
60 |
+
|
61 |
+
x = self.dropout1(x)
|
62 |
+
|
63 |
+
y = inp + x * self.beta # size [B, C, H, W]
|
64 |
+
|
65 |
+
x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
|
66 |
+
x = self.sg(x) # size [B, C, H, W]
|
67 |
+
x = self.conv5(x) # size [B, C, H, W]
|
68 |
+
|
69 |
+
x = self.dropout2(x)
|
70 |
+
|
71 |
+
return y + x * self.gamma
|
72 |
+
|
73 |
+
|
74 |
+
class NAFNet(nn.Module):
|
75 |
+
|
76 |
+
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[]):
|
77 |
+
super().__init__()
|
78 |
+
|
79 |
+
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
|
80 |
+
bias=True)
|
81 |
+
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
|
82 |
+
bias=True)
|
83 |
+
|
84 |
+
self.encoders = nn.ModuleList()
|
85 |
+
self.decoders = nn.ModuleList()
|
86 |
+
self.middle_blks = nn.ModuleList()
|
87 |
+
self.ups = nn.ModuleList()
|
88 |
+
self.downs = nn.ModuleList()
|
89 |
+
|
90 |
+
chan = width
|
91 |
+
for num in enc_blk_nums:
|
92 |
+
self.encoders.append(
|
93 |
+
nn.Sequential(
|
94 |
+
*[NAFBlock(chan) for _ in range(num)]
|
95 |
+
)
|
96 |
+
)
|
97 |
+
self.downs.append(
|
98 |
+
nn.Conv2d(chan, 2*chan, 2, 2)
|
99 |
+
)
|
100 |
+
chan = chan * 2
|
101 |
+
|
102 |
+
self.middle_blks = \
|
103 |
+
nn.Sequential(
|
104 |
+
*[NAFBlock(chan) for _ in range(middle_blk_num)]
|
105 |
+
)
|
106 |
+
|
107 |
+
for num in dec_blk_nums:
|
108 |
+
self.ups.append(
|
109 |
+
nn.Sequential(
|
110 |
+
nn.Conv2d(chan, chan * 2, 1, bias=False),
|
111 |
+
nn.PixelShuffle(2)
|
112 |
+
)
|
113 |
+
)
|
114 |
+
chan = chan // 2
|
115 |
+
self.decoders.append(
|
116 |
+
nn.Sequential(
|
117 |
+
*[NAFBlock(chan) for _ in range(num)]
|
118 |
+
)
|
119 |
+
)
|
120 |
+
|
121 |
+
self.padder_size = 2 ** len(self.encoders)
|
122 |
+
|
123 |
+
def forward(self, inp):
|
124 |
+
B, C, H, W = inp.shape
|
125 |
+
inp = self.check_image_size(inp)
|
126 |
+
|
127 |
+
x = self.intro(inp)
|
128 |
+
|
129 |
+
encs = []
|
130 |
+
|
131 |
+
for encoder, down in zip(self.encoders, self.downs):
|
132 |
+
x = encoder(x)
|
133 |
+
encs.append(x)
|
134 |
+
x = down(x)
|
135 |
+
|
136 |
+
x = self.middle_blks(x)
|
137 |
+
|
138 |
+
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
|
139 |
+
x = up(x)
|
140 |
+
x = x + enc_skip
|
141 |
+
x = decoder(x)
|
142 |
+
|
143 |
+
x = self.ending(x)
|
144 |
+
x = x + inp
|
145 |
+
|
146 |
+
return x[:, :, :H, :W]
|
147 |
+
|
148 |
+
def check_image_size(self, x):
|
149 |
+
_, _, h, w = x.size()
|
150 |
+
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
|
151 |
+
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
|
152 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
class NAFNetLocal(Local_Base, NAFNet):
|
157 |
+
def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs):
|
158 |
+
Local_Base.__init__(self)
|
159 |
+
NAFNet.__init__(self, *args, **kwargs)
|
160 |
+
|
161 |
+
N, C, H, W = train_size
|
162 |
+
base_size = (int(H * 1.5), int(W * 1.5))
|
163 |
+
|
164 |
+
self.eval()
|
165 |
+
with torch.no_grad():
|
166 |
+
self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp)
|
167 |
+
|
168 |
+
class FreBlock(nn.Module):
|
169 |
+
def __init__(self, nc):
|
170 |
+
super(FreBlock, self).__init__()
|
171 |
+
self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
|
172 |
+
self.process1 = nn.Sequential(
|
173 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
174 |
+
nn.LeakyReLU(0.1, inplace=True),
|
175 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
176 |
+
self.process2 = nn.Sequential(
|
177 |
+
nn.Conv2d(nc, nc, 1, 1, 0),
|
178 |
+
nn.LeakyReLU(0.1, inplace=True),
|
179 |
+
nn.Conv2d(nc, nc, 1, 1, 0))
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
_, _, H, W = x.shape
|
183 |
+
x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
|
184 |
+
mag = torch.abs(x_freq)
|
185 |
+
pha = torch.angle(x_freq)
|
186 |
+
mag = self.process1(mag)
|
187 |
+
pha = self.process2(pha)
|
188 |
+
real = mag * torch.cos(pha)
|
189 |
+
imag = mag * torch.sin(pha)
|
190 |
+
x_out = torch.complex(real, imag)
|
191 |
+
x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
|
192 |
+
|
193 |
+
return x_out+x
|
194 |
+
|
195 |
+
# class FPA(nn.Module):
|
196 |
+
|
197 |
+
# def __init__(self,nc):
|
198 |
+
# super(FPA, self).__init__()
|
199 |
+
# self.process_mag = nn.Sequential(
|
200 |
+
# nn.Conv2d(nc, nc, 1, 1, 0),
|
201 |
+
# nn.LeakyReLU(0.1, inplace=True),
|
202 |
+
# nn.Conv2d(nc, nc, 1, 1, 0),
|
203 |
+
# nn.LeakyReLU(0.1, inplace=True),
|
204 |
+
# nn.Conv2d(nc, nc, 1, 1, 0))
|
205 |
+
# self.process_pha = nn.Sequential(
|
206 |
+
# nn.Conv2d(nc, nc, 1, 1, 0),
|
207 |
+
# nn.LeakyReLU(0.1, inplace=True),
|
208 |
+
# nn.Conv2d(nc, nc, 1, 1, 0),
|
209 |
+
# nn.LeakyReLU(0.1, inplace=True),
|
210 |
+
# nn.Conv2d(nc, nc, 1, 1, 0))
|
211 |
+
|
212 |
+
# def forward(self, input):
|
213 |
+
# _, _, H, W = input.shape
|
214 |
+
# x_freq = torch.fft.rfft2(input, norm='backward')
|
215 |
+
# mag = torch.abs(x_freq)
|
216 |
+
# pha = torch.angle(x_freq)
|
217 |
+
# mag = mag + self.process_mag(mag)
|
218 |
+
# pha = pha + self.process_pha(pha)
|
219 |
+
# real = mag * torch.cos(pha)
|
220 |
+
# imag = mag * torch.sin(pha)
|
221 |
+
# x_out = torch.complex(real, imag)
|
222 |
+
# x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
|
223 |
+
# return x_out
|
224 |
+
|
225 |
+
|
226 |
+
# class FBlock(nn.Module):
|
227 |
+
|
228 |
+
# def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False):
|
229 |
+
# super(FBlock, self).__init__()
|
230 |
+
|
231 |
+
# self.branches = nn.ModuleList()
|
232 |
+
# for dilation in dilations:
|
233 |
+
# self.branches.append(Branch_v2(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
|
234 |
+
|
235 |
+
# assert len(dilations) == len(self.branches)
|
236 |
+
# self.dw_channel = DW_Expand * c
|
237 |
+
# self.sca = nn.Sequential(
|
238 |
+
# nn.AdaptiveAvgPool2d(1),
|
239 |
+
# nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
240 |
+
# groups=1, bias=True, dilation = 1),
|
241 |
+
# )
|
242 |
+
# self.sg1 = SimpleGate()
|
243 |
+
# self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
# self.norm1 = LayerNorm2d(c)
|
248 |
+
# self.norm2 = LayerNorm2d(c)
|
249 |
+
|
250 |
+
# ffn_channel = FFN_Expand * c
|
251 |
+
# self.conv_fpr_intro = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
|
252 |
+
# self.fpa = FPA(nc = ffn_channel)
|
253 |
+
# self.conv_fpr_out = nn.Conv2d(in_channels=ffn_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
|
254 |
+
|
255 |
+
# self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
256 |
+
# self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
257 |
+
|
258 |
+
def forward(self, inp):
|
259 |
+
|
260 |
+
y = inp
|
261 |
+
x = self.norm1(inp)
|
262 |
+
z=0
|
263 |
+
for branch in self.branches:
|
264 |
+
z += branch(x)
|
265 |
+
|
266 |
+
z = self.sg1(z)
|
267 |
+
x = self.sca(z) * z
|
268 |
+
x = self.conv3(x)
|
269 |
+
y = inp + self.beta * x
|
270 |
+
#Frequency pixel residue
|
271 |
+
x = self.conv_fpr_intro(self.norm2(y)) # size [B, C, H, W]
|
272 |
+
x = self.fpa(x) # size [B, C, H, W]
|
273 |
+
x = self.conv_fpr_out(x)
|
274 |
+
|
275 |
+
return y + x * self.gamma
|
276 |
+
|
277 |
+
if __name__ == '__main__':
|
278 |
+
|
279 |
+
img_channel = 3
|
280 |
+
width = 32
|
281 |
+
|
282 |
+
enc_blks = [1, 2, 3]
|
283 |
+
middle_blk_num = 3
|
284 |
+
dec_blks = [3, 1, 1]
|
285 |
+
dilations = [1, 4, 9]
|
286 |
+
extra_depth_wise = False
|
287 |
+
|
288 |
+
# net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
|
289 |
+
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
|
290 |
+
net = EBlock_v2(c = img_channel,
|
291 |
+
dilations = dilations,
|
292 |
+
extra_depth_wise=extra_depth_wise)
|
293 |
+
|
294 |
+
inp_shape = (3, 256, 256)
|
295 |
+
|
296 |
+
from ptflops import get_model_complexity_info
|
297 |
+
|
298 |
+
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)
|
299 |
+
|
300 |
+
|
301 |
+
print(macs, params)
|
archs/nafnet_utils/arch_util.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.nn import init as init
|
6 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
7 |
+
|
8 |
+
|
9 |
+
# try:
|
10 |
+
# from basicsr.models.ops.dcn import (ModulatedDeformConvPack,
|
11 |
+
# modulated_deform_conv)
|
12 |
+
# except ImportError:
|
13 |
+
# # print('Cannot import dcn. Ignore this warning if dcn is not used. '
|
14 |
+
# # 'Otherwise install BasicSR with compiling dcn.')
|
15 |
+
#
|
16 |
+
|
17 |
+
@torch.no_grad()
|
18 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
19 |
+
"""Initialize network weights.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
23 |
+
scale (float): Scale initialized weights, especially for residual
|
24 |
+
blocks. Default: 1.
|
25 |
+
bias_fill (float): The value to fill bias. Default: 0
|
26 |
+
kwargs (dict): Other arguments for initialization function.
|
27 |
+
"""
|
28 |
+
if not isinstance(module_list, list):
|
29 |
+
module_list = [module_list]
|
30 |
+
for module in module_list:
|
31 |
+
for m in module.modules():
|
32 |
+
if isinstance(m, nn.Conv2d):
|
33 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
34 |
+
m.weight.data *= scale
|
35 |
+
if m.bias is not None:
|
36 |
+
m.bias.data.fill_(bias_fill)
|
37 |
+
elif isinstance(m, nn.Linear):
|
38 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
39 |
+
m.weight.data *= scale
|
40 |
+
if m.bias is not None:
|
41 |
+
m.bias.data.fill_(bias_fill)
|
42 |
+
elif isinstance(m, _BatchNorm):
|
43 |
+
init.constant_(m.weight, 1)
|
44 |
+
if m.bias is not None:
|
45 |
+
m.bias.data.fill_(bias_fill)
|
46 |
+
|
47 |
+
|
48 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
49 |
+
"""Make layers by stacking the same blocks.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
basic_block (nn.module): nn.module class for basic block.
|
53 |
+
num_basic_block (int): number of blocks.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
57 |
+
"""
|
58 |
+
layers = []
|
59 |
+
for _ in range(num_basic_block):
|
60 |
+
layers.append(basic_block(**kwarg))
|
61 |
+
return nn.Sequential(*layers)
|
62 |
+
|
63 |
+
|
64 |
+
class ResidualBlockNoBN(nn.Module):
|
65 |
+
"""Residual block without BN.
|
66 |
+
|
67 |
+
It has a style of:
|
68 |
+
---Conv-ReLU-Conv-+-
|
69 |
+
|________________|
|
70 |
+
|
71 |
+
Args:
|
72 |
+
num_feat (int): Channel number of intermediate features.
|
73 |
+
Default: 64.
|
74 |
+
res_scale (float): Residual scale. Default: 1.
|
75 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
76 |
+
otherwise, use default_init_weights. Default: False.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
80 |
+
super(ResidualBlockNoBN, self).__init__()
|
81 |
+
self.res_scale = res_scale
|
82 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
83 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
84 |
+
self.relu = nn.ReLU(inplace=True)
|
85 |
+
|
86 |
+
if not pytorch_init:
|
87 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
identity = x
|
91 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
92 |
+
return identity + out * self.res_scale
|
93 |
+
|
94 |
+
|
95 |
+
class Upsample(nn.Sequential):
|
96 |
+
"""Upsample module.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
100 |
+
num_feat (int): Channel number of intermediate features.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, scale, num_feat):
|
104 |
+
m = []
|
105 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
106 |
+
for _ in range(int(math.log(scale, 2))):
|
107 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
108 |
+
m.append(nn.PixelShuffle(2))
|
109 |
+
elif scale == 3:
|
110 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
111 |
+
m.append(nn.PixelShuffle(3))
|
112 |
+
else:
|
113 |
+
raise ValueError(f'scale {scale} is not supported. '
|
114 |
+
'Supported scales: 2^n and 3.')
|
115 |
+
super(Upsample, self).__init__(*m)
|
116 |
+
|
117 |
+
|
118 |
+
def flow_warp(x,
|
119 |
+
flow,
|
120 |
+
interp_mode='bilinear',
|
121 |
+
padding_mode='zeros',
|
122 |
+
align_corners=True):
|
123 |
+
"""Warp an image or feature map with optical flow.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
127 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
128 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
129 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
130 |
+
Default: 'zeros'.
|
131 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
132 |
+
align_corners=True. After pytorch 1.3, the default value is
|
133 |
+
align_corners=False. Here, we use the True as default.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
Tensor: Warped image or feature map.
|
137 |
+
"""
|
138 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
139 |
+
_, _, h, w = x.size()
|
140 |
+
# create mesh grid
|
141 |
+
grid_y, grid_x = torch.meshgrid(
|
142 |
+
torch.arange(0, h).type_as(x),
|
143 |
+
torch.arange(0, w).type_as(x))
|
144 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
145 |
+
grid.requires_grad = False
|
146 |
+
|
147 |
+
vgrid = grid + flow
|
148 |
+
# scale grid to [-1,1]
|
149 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
150 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
151 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
152 |
+
output = F.grid_sample(
|
153 |
+
x,
|
154 |
+
vgrid_scaled,
|
155 |
+
mode=interp_mode,
|
156 |
+
padding_mode=padding_mode,
|
157 |
+
align_corners=align_corners)
|
158 |
+
|
159 |
+
# TODO, what if align_corners=False
|
160 |
+
return output
|
161 |
+
|
162 |
+
|
163 |
+
def resize_flow(flow,
|
164 |
+
size_type,
|
165 |
+
sizes,
|
166 |
+
interp_mode='bilinear',
|
167 |
+
align_corners=False):
|
168 |
+
"""Resize a flow according to ratio or shape.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
172 |
+
size_type (str): 'ratio' or 'shape'.
|
173 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
174 |
+
shape.
|
175 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
176 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
177 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
178 |
+
ratio > 1.0).
|
179 |
+
2) The order of output_size should be [out_h, out_w].
|
180 |
+
interp_mode (str): The mode of interpolation for resizing.
|
181 |
+
Default: 'bilinear'.
|
182 |
+
align_corners (bool): Whether align corners. Default: False.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
Tensor: Resized flow.
|
186 |
+
"""
|
187 |
+
_, _, flow_h, flow_w = flow.size()
|
188 |
+
if size_type == 'ratio':
|
189 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
190 |
+
elif size_type == 'shape':
|
191 |
+
output_h, output_w = sizes[0], sizes[1]
|
192 |
+
else:
|
193 |
+
raise ValueError(
|
194 |
+
f'Size type should be ratio or shape, but got type {size_type}.')
|
195 |
+
|
196 |
+
input_flow = flow.clone()
|
197 |
+
ratio_h = output_h / flow_h
|
198 |
+
ratio_w = output_w / flow_w
|
199 |
+
input_flow[:, 0, :, :] *= ratio_w
|
200 |
+
input_flow[:, 1, :, :] *= ratio_h
|
201 |
+
resized_flow = F.interpolate(
|
202 |
+
input=input_flow,
|
203 |
+
size=(output_h, output_w),
|
204 |
+
mode=interp_mode,
|
205 |
+
align_corners=align_corners)
|
206 |
+
return resized_flow
|
207 |
+
|
208 |
+
|
209 |
+
# TODO: may write a cpp file
|
210 |
+
def pixel_unshuffle(x, scale):
|
211 |
+
""" Pixel unshuffle.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
215 |
+
scale (int): Downsample ratio.
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
Tensor: the pixel unshuffled feature.
|
219 |
+
"""
|
220 |
+
b, c, hh, hw = x.size()
|
221 |
+
out_channel = c * (scale**2)
|
222 |
+
assert hh % scale == 0 and hw % scale == 0
|
223 |
+
h = hh // scale
|
224 |
+
w = hw // scale
|
225 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
226 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
227 |
+
|
228 |
+
|
229 |
+
# class DCNv2Pack(ModulatedDeformConvPack):
|
230 |
+
# """Modulated deformable conv for deformable alignment.
|
231 |
+
#
|
232 |
+
# Different from the official DCNv2Pack, which generates offsets and masks
|
233 |
+
# from the preceding features, this DCNv2Pack takes another different
|
234 |
+
# features to generate offsets and masks.
|
235 |
+
#
|
236 |
+
# Ref:
|
237 |
+
# Delving Deep into Deformable Alignment in Video Super-Resolution.
|
238 |
+
# """
|
239 |
+
#
|
240 |
+
# def forward(self, x, feat):
|
241 |
+
# out = self.conv_offset(feat)
|
242 |
+
# o1, o2, mask = torch.chunk(out, 3, dim=1)
|
243 |
+
# offset = torch.cat((o1, o2), dim=1)
|
244 |
+
# mask = torch.sigmoid(mask)
|
245 |
+
#
|
246 |
+
# offset_absmean = torch.mean(torch.abs(offset))
|
247 |
+
# if offset_absmean > 50:
|
248 |
+
# logger = get_root_logger()
|
249 |
+
# logger.warning(
|
250 |
+
# f'Offset abs mean is {offset_absmean}, larger than 50.')
|
251 |
+
#
|
252 |
+
# return modulated_deform_conv(x, offset, mask, self.weight, self.bias,
|
253 |
+
# self.stride, self.padding, self.dilation,
|
254 |
+
# self.groups, self.deformable_groups)
|
255 |
+
|
256 |
+
|
257 |
+
class LayerNormFunction(torch.autograd.Function):
|
258 |
+
|
259 |
+
@staticmethod
|
260 |
+
def forward(ctx, x, weight, bias, eps):
|
261 |
+
ctx.eps = eps
|
262 |
+
N, C, H, W = x.size()
|
263 |
+
mu = x.mean(1, keepdim=True)
|
264 |
+
var = (x - mu).pow(2).mean(1, keepdim=True)
|
265 |
+
y = (x - mu) / (var + eps).sqrt()
|
266 |
+
ctx.save_for_backward(y, var, weight)
|
267 |
+
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
|
268 |
+
return y
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def backward(ctx, grad_output):
|
272 |
+
eps = ctx.eps
|
273 |
+
|
274 |
+
N, C, H, W = grad_output.size()
|
275 |
+
y, var, weight = ctx.saved_variables
|
276 |
+
g = grad_output * weight.view(1, C, 1, 1)
|
277 |
+
mean_g = g.mean(dim=1, keepdim=True)
|
278 |
+
|
279 |
+
mean_gy = (g * y).mean(dim=1, keepdim=True)
|
280 |
+
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
|
281 |
+
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
|
282 |
+
dim=0), None
|
283 |
+
|
284 |
+
class LayerNorm2d(nn.Module):
|
285 |
+
|
286 |
+
def __init__(self, channels, eps=1e-6):
|
287 |
+
super(LayerNorm2d, self).__init__()
|
288 |
+
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
|
289 |
+
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
|
290 |
+
self.eps = eps
|
291 |
+
|
292 |
+
def forward(self, x):
|
293 |
+
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
|
294 |
+
|
295 |
+
# handle multiple input
|
296 |
+
class MySequential(nn.Sequential):
|
297 |
+
def forward(self, *inputs):
|
298 |
+
for module in self._modules.values():
|
299 |
+
if type(inputs) == tuple:
|
300 |
+
inputs = module(*inputs)
|
301 |
+
else:
|
302 |
+
inputs = module(inputs)
|
303 |
+
return inputs
|
304 |
+
|
305 |
+
import time
|
306 |
+
def measure_inference_speed(model, data, max_iter=200, log_interval=50):
|
307 |
+
model.eval()
|
308 |
+
|
309 |
+
# the first several iterations may be very slow so skip them
|
310 |
+
num_warmup = 5
|
311 |
+
pure_inf_time = 0
|
312 |
+
fps = 0
|
313 |
+
|
314 |
+
# benchmark with 2000 image and take the average
|
315 |
+
for i in range(max_iter):
|
316 |
+
|
317 |
+
torch.cuda.synchronize()
|
318 |
+
start_time = time.perf_counter()
|
319 |
+
|
320 |
+
with torch.no_grad():
|
321 |
+
model(*data)
|
322 |
+
|
323 |
+
torch.cuda.synchronize()
|
324 |
+
elapsed = time.perf_counter() - start_time
|
325 |
+
|
326 |
+
if i >= num_warmup:
|
327 |
+
pure_inf_time += elapsed
|
328 |
+
if (i + 1) % log_interval == 0:
|
329 |
+
fps = (i + 1 - num_warmup) / pure_inf_time
|
330 |
+
print(
|
331 |
+
f'Done image [{i + 1:<3}/ {max_iter}], '
|
332 |
+
f'fps: {fps:.1f} img / s, '
|
333 |
+
f'times per image: {1000 / fps:.1f} ms / img',
|
334 |
+
flush=True)
|
335 |
+
|
336 |
+
if (i + 1) == max_iter:
|
337 |
+
fps = (i + 1 - num_warmup) / pure_inf_time
|
338 |
+
print(
|
339 |
+
f'Overall fps: {fps:.1f} img / s, '
|
340 |
+
f'times per image: {1000 / fps:.1f} ms / img',
|
341 |
+
flush=True)
|
342 |
+
break
|
343 |
+
return fps
|
archs/nafnet_utils/local_arch.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
class AvgPool2d(nn.Module):
|
7 |
+
def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False, train_size=None):
|
8 |
+
super().__init__()
|
9 |
+
self.kernel_size = kernel_size
|
10 |
+
self.base_size = base_size
|
11 |
+
self.auto_pad = auto_pad
|
12 |
+
|
13 |
+
# only used for fast implementation
|
14 |
+
self.fast_imp = fast_imp
|
15 |
+
self.rs = [5, 4, 3, 2, 1]
|
16 |
+
self.max_r1 = self.rs[0]
|
17 |
+
self.max_r2 = self.rs[0]
|
18 |
+
self.train_size = train_size
|
19 |
+
|
20 |
+
def extra_repr(self) -> str:
|
21 |
+
return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format(
|
22 |
+
self.kernel_size, self.base_size, self.kernel_size, self.fast_imp
|
23 |
+
)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
if self.kernel_size is None and self.base_size:
|
27 |
+
train_size = self.train_size
|
28 |
+
if isinstance(self.base_size, int):
|
29 |
+
self.base_size = (self.base_size, self.base_size)
|
30 |
+
self.kernel_size = list(self.base_size)
|
31 |
+
self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2]
|
32 |
+
self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1]
|
33 |
+
|
34 |
+
# only used for fast implementation
|
35 |
+
self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2])
|
36 |
+
self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1])
|
37 |
+
|
38 |
+
if self.kernel_size[0] >= x.size(-2) and self.kernel_size[1] >= x.size(-1):
|
39 |
+
return F.adaptive_avg_pool2d(x, 1)
|
40 |
+
|
41 |
+
if self.fast_imp: # Non-equivalent implementation but faster
|
42 |
+
h, w = x.shape[2:]
|
43 |
+
if self.kernel_size[0] >= h and self.kernel_size[1] >= w:
|
44 |
+
out = F.adaptive_avg_pool2d(x, 1)
|
45 |
+
else:
|
46 |
+
r1 = [r for r in self.rs if h % r == 0][0]
|
47 |
+
r2 = [r for r in self.rs if w % r == 0][0]
|
48 |
+
# reduction_constraint
|
49 |
+
r1 = min(self.max_r1, r1)
|
50 |
+
r2 = min(self.max_r2, r2)
|
51 |
+
s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2)
|
52 |
+
n, c, h, w = s.shape
|
53 |
+
k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2)
|
54 |
+
out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2)
|
55 |
+
out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2))
|
56 |
+
else:
|
57 |
+
n, c, h, w = x.shape
|
58 |
+
s = x.cumsum(dim=-1).cumsum_(dim=-2)
|
59 |
+
s = torch.nn.functional.pad(s, (1, 0, 1, 0)) # pad 0 for convenience
|
60 |
+
k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1])
|
61 |
+
s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:]
|
62 |
+
out = s4 + s1 - s2 - s3
|
63 |
+
out = out / (k1 * k2)
|
64 |
+
|
65 |
+
if self.auto_pad:
|
66 |
+
n, c, h, w = x.shape
|
67 |
+
_h, _w = out.shape[2:]
|
68 |
+
# print(x.shape, self.kernel_size)
|
69 |
+
pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2)
|
70 |
+
out = torch.nn.functional.pad(out, pad2d, mode='replicate')
|
71 |
+
|
72 |
+
return out
|
73 |
+
|
74 |
+
def replace_layers(model, base_size, train_size, fast_imp, **kwargs):
|
75 |
+
for n, m in model.named_children():
|
76 |
+
if len(list(m.children())) > 0:
|
77 |
+
## compound module, go inside it
|
78 |
+
replace_layers(m, base_size, train_size, fast_imp, **kwargs)
|
79 |
+
|
80 |
+
if isinstance(m, nn.AdaptiveAvgPool2d):
|
81 |
+
pool = AvgPool2d(base_size=base_size, fast_imp=fast_imp, train_size=train_size)
|
82 |
+
assert m.output_size == 1
|
83 |
+
setattr(model, n, pool)
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
class Local_Base():
|
88 |
+
def convert(self, *args, train_size, **kwargs):
|
89 |
+
replace_layers(self, *args, train_size=train_size, **kwargs)
|
90 |
+
imgs = torch.rand(train_size)
|
91 |
+
with torch.no_grad():
|
92 |
+
self.forward(imgs)
|
archs/network.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import functools
|
5 |
+
try:
|
6 |
+
from .arch_util import EBlock, Attention_Light
|
7 |
+
from .arch_util_freq import EBlock_freq
|
8 |
+
except:
|
9 |
+
from arch_util import EBlock, Attention_Light
|
10 |
+
from arch_util_freq import EBlock_freq
|
11 |
+
|
12 |
+
|
13 |
+
class Network(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, img_channel=3,
|
16 |
+
width=16,
|
17 |
+
middle_blk_num=1,
|
18 |
+
enc_blk_nums=[],
|
19 |
+
dec_blk_nums=[],
|
20 |
+
dilations = [1],
|
21 |
+
extra_depth_wise = False):
|
22 |
+
super(Network, self).__init__()
|
23 |
+
|
24 |
+
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
|
25 |
+
bias=True)
|
26 |
+
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
|
27 |
+
bias=True)
|
28 |
+
|
29 |
+
self.encoders = nn.ModuleList()
|
30 |
+
self.decoders = nn.ModuleList()
|
31 |
+
self.middle_blks = nn.ModuleList()
|
32 |
+
self.ups = nn.ModuleList()
|
33 |
+
self.downs = nn.ModuleList()
|
34 |
+
|
35 |
+
chan = width
|
36 |
+
for num in enc_blk_nums:
|
37 |
+
self.encoders.append(
|
38 |
+
nn.Sequential(
|
39 |
+
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
|
40 |
+
)
|
41 |
+
)
|
42 |
+
self.downs.append(
|
43 |
+
nn.Conv2d(chan, 2*chan, 2, 2)
|
44 |
+
)
|
45 |
+
chan = chan * 2
|
46 |
+
|
47 |
+
self.middle_blks = \
|
48 |
+
nn.Sequential(
|
49 |
+
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num)]
|
50 |
+
)
|
51 |
+
|
52 |
+
for num in dec_blk_nums:
|
53 |
+
self.ups.append(
|
54 |
+
nn.Sequential(
|
55 |
+
nn.Conv2d(chan, chan * 2, 1, bias=False),
|
56 |
+
nn.PixelShuffle(2)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
chan = chan // 2
|
60 |
+
self.decoders.append(
|
61 |
+
nn.Sequential(
|
62 |
+
*[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
|
63 |
+
)
|
64 |
+
)
|
65 |
+
|
66 |
+
self.padder_size = 2 ** len(self.encoders)
|
67 |
+
|
68 |
+
#define the attention layers
|
69 |
+
|
70 |
+
# self.recon_trunk_light = nn.Sequential(*[FBlock(c = chan * self.padder_size,
|
71 |
+
# DW_Expand=2, FFN_Expand=2, dilations = dilations,
|
72 |
+
# extra_depth_wise = False) for i in range(residual_layers)])
|
73 |
+
|
74 |
+
# ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf = width * self.padder_size)
|
75 |
+
# self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, residual_layers)
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def forward(self, input):
|
80 |
+
|
81 |
+
_, _, H, W = input.shape
|
82 |
+
|
83 |
+
x = self.intro(input)
|
84 |
+
|
85 |
+
encs = []
|
86 |
+
# i = 0
|
87 |
+
for encoder, down in zip(self.encoders, self.downs):
|
88 |
+
x = encoder(x)
|
89 |
+
# print(i, x.shape)
|
90 |
+
encs.append(x)
|
91 |
+
x = down(x)
|
92 |
+
# i += 1
|
93 |
+
|
94 |
+
x = self.middle_blks(x)
|
95 |
+
# print('3', x.shape)
|
96 |
+
# apply the mask
|
97 |
+
# x = x * mask
|
98 |
+
|
99 |
+
# x = self.recon_trunk_light(x)
|
100 |
+
|
101 |
+
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
|
102 |
+
x = up(x)
|
103 |
+
x = x + enc_skip
|
104 |
+
x = decoder(x)
|
105 |
+
|
106 |
+
x = self.ending(x)
|
107 |
+
x = x + input
|
108 |
+
|
109 |
+
return x[:, :, :H, :W]
|
110 |
+
|
111 |
+
|
112 |
+
if __name__ == '__main__':
|
113 |
+
|
114 |
+
img_channel = 3
|
115 |
+
width = 32
|
116 |
+
|
117 |
+
enc_blks = [1, 2, 3]
|
118 |
+
middle_blk_num = 3
|
119 |
+
dec_blks = [3, 1, 1]
|
120 |
+
residual_layers = 2
|
121 |
+
dilations = [1, 4]
|
122 |
+
|
123 |
+
net = Network(img_channel=img_channel,
|
124 |
+
width=width,
|
125 |
+
middle_blk_num=middle_blk_num,
|
126 |
+
enc_blk_nums=enc_blks,
|
127 |
+
dec_blk_nums=dec_blks,
|
128 |
+
dilations = dilations)
|
129 |
+
|
130 |
+
# NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
|
131 |
+
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
|
132 |
+
|
133 |
+
inp_shape = (3, 256, 256)
|
134 |
+
|
135 |
+
from ptflops import get_model_complexity_info
|
136 |
+
|
137 |
+
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)
|
138 |
+
|
139 |
+
print(macs, params)
|
140 |
+
inp = torch.randn(1, 3, 256, 256)
|
141 |
+
out = net(inp)
|
142 |
+
|
143 |
+
|