|
import os |
|
import gradio as gr |
|
import pandas as pd |
|
import plotly.express as px |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
from src.assets.css_html_js import custom_css, custom_js |
|
from src.assets.text_content import ( |
|
TITLE, |
|
INTRODUCTION_TEXT, |
|
A100_TEXT, |
|
ABOUT_TEXT, |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
) |
|
from src.utils import ( |
|
change_tab, |
|
restart_space, |
|
load_dataset_repo, |
|
process_model_name, |
|
process_model_type, |
|
process_weight_class, |
|
) |
|
|
|
|
|
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" |
|
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" |
|
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) |
|
|
|
|
|
ALL_COLUMNS_MAPPING = { |
|
"model_type": "Model Type ๐ค", |
|
"weight_class": "Weight Class ๐๏ธ", |
|
"best_scored_model": "Best Scored Model ๐", |
|
|
|
"backend.name": "Backend ๐ญ", |
|
"backend.torch_dtype": "Dtype ๐ฅ", |
|
"optimizations": "Optimizations ๐ ๏ธ", |
|
|
|
|
|
|
|
"generate.throughput(tokens/s)": "Throughput (tokens/s) โฌ๏ธ", |
|
"forward.peak_memory(MB)": "Peak Memory (MB) โฌ๏ธ", |
|
"best_score": "Score (%) โฌ๏ธ", |
|
|
|
} |
|
ALL_COLUMNS_DATATYPES = [ |
|
"str", |
|
"str", |
|
"markdown", |
|
|
|
"str", |
|
"str", |
|
"str", |
|
|
|
|
|
|
|
"number", |
|
"number", |
|
"number", |
|
] |
|
SORTING_COLUMN = ["Score (%) โฌ๏ธ"] |
|
|
|
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) |
|
|
|
|
|
def get_benchmark_df(benchmark="1xA100-80GB"): |
|
if llm_perf_dataset_repo: |
|
llm_perf_dataset_repo.git_pull() |
|
|
|
|
|
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") |
|
scores_df = pd.read_csv( |
|
f"./llm-perf-dataset/reports/Grouped-Open-LLM-Leaderboard.csv" |
|
) |
|
bench_df = bench_df.merge(scores_df, left_on="model", right_on="best_scored_model") |
|
|
|
|
|
bench_df["optimizations"] = bench_df[ |
|
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"] |
|
].apply( |
|
lambda x: ", ".join( |
|
filter( |
|
lambda x: x != "", |
|
[ |
|
"BetterTransformer" if x[0] == True else "", |
|
"LLM.int8" if x[1] == True else "", |
|
"LLM.fp4" if x[2] == True else "", |
|
], |
|
), |
|
) |
|
if any([x[0] == True, x[1] == True, x[2] == True]) |
|
else "None", |
|
axis=1, |
|
) |
|
|
|
return bench_df |
|
|
|
|
|
def get_benchmark_table(bench_df): |
|
|
|
bench_df = bench_df[list(ALL_COLUMNS_MAPPING.keys())] |
|
|
|
bench_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True) |
|
|
|
bench_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True) |
|
|
|
bench_df["Model Type ๐ค"] = bench_df["Model Type ๐ค"].apply(process_model_type) |
|
bench_df["Weight Class ๐๏ธ"] = bench_df["Weight Class ๐๏ธ"].apply( |
|
process_weight_class |
|
) |
|
bench_df["Best Scored Model ๐"] = bench_df["Best Scored Model ๐"].apply( |
|
process_model_name |
|
) |
|
return bench_df |
|
|
|
|
|
def get_benchmark_plot(bench_df): |
|
|
|
bench_df = bench_df[bench_df["generate.latency(s)"] < 150] |
|
|
|
fig = px.scatter( |
|
bench_df, |
|
x="generate.latency(s)", |
|
y="best_score", |
|
color="model_type", |
|
symbol="backend.name", |
|
size="forward.peak_memory(MB)", |
|
custom_data=[ |
|
"best_scored_model", |
|
"backend.name", |
|
"backend.torch_dtype", |
|
"optimizations", |
|
"forward.peak_memory(MB)", |
|
"generate.throughput(tokens/s)", |
|
], |
|
symbol_sequence=["triangle-up", "circle"], |
|
color_discrete_sequence=px.colors.qualitative.Light24, |
|
) |
|
|
|
fig.update_layout( |
|
title={ |
|
"text": "Model Score vs. Latency vs. Memory", |
|
"y": 0.95, |
|
"x": 0.5, |
|
"xanchor": "center", |
|
"yanchor": "top", |
|
}, |
|
xaxis_title="Per 1000 Tokens Latency (s)", |
|
yaxis_title="Open LLM Score", |
|
legend_title="Model Type and Backend", |
|
width=1200, |
|
height=600, |
|
) |
|
|
|
fig.update_traces( |
|
hovertemplate="<br>".join( |
|
[ |
|
"Model: %{customdata[0]}", |
|
"Backend: %{customdata[1]}", |
|
"Load Datatype: %{customdata[2]}", |
|
"Optimizations: %{customdata[3]}", |
|
"Peak Memory (MB): %{customdata[4]}", |
|
"Throughput (tokens/s): %{customdata[5]}", |
|
"Per 1000 Tokens Latency (s): %{x}", |
|
"Open LLM Score (%): %{y}", |
|
] |
|
) |
|
) |
|
|
|
return fig |
|
|
|
|
|
def filter_query( |
|
text, |
|
backends, |
|
datatypes, |
|
optimizations, |
|
score, |
|
memory, |
|
benchmark="1xA100-80GB", |
|
): |
|
raw_df = get_benchmark_df(benchmark=benchmark) |
|
|
|
filtered_df = raw_df[ |
|
raw_df["best_scored_model"].str.lower().str.contains(text.lower()) |
|
& raw_df["backend.name"].isin(backends) |
|
& raw_df["backend.torch_dtype"].isin(datatypes) |
|
& ( |
|
pd.concat( |
|
[ |
|
raw_df["optimizations"].str.contains(optimization) |
|
for optimization in optimizations |
|
], |
|
axis=1, |
|
).any(axis="columns") |
|
if len(optimizations) > 0 |
|
else True |
|
) |
|
& (raw_df["best_score"] >= score) |
|
& (raw_df["forward.peak_memory(MB)"] <= memory) |
|
] |
|
|
|
filtered_table = get_benchmark_table(filtered_df) |
|
filtered_plot = get_benchmark_plot(filtered_df) |
|
|
|
return filtered_table, filtered_plot |
|
|
|
|
|
|
|
A100_df = get_benchmark_df(benchmark="1xA100-80GB") |
|
A100_table = get_benchmark_table(A100_df) |
|
A100_plot = get_benchmark_plot(A100_df) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
|
|
gr.HTML(TITLE) |
|
|
|
|
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: |
|
with gr.TabItem("๐ฅ๏ธ A100-80GB Leaderboard Table ๐
", id=0): |
|
gr.HTML(A100_TEXT) |
|
|
|
|
|
A100_leaderboard = gr.components.Dataframe( |
|
value=A100_table, |
|
datatype=ALL_COLUMNS_DATATYPES, |
|
headers=list(ALL_COLUMNS_MAPPING.values()), |
|
elem_id="1xA100-table", |
|
) |
|
|
|
with gr.TabItem("๐ฅ๏ธ A100-80GB Interactive Plot ๐", id=2): |
|
gr.HTML(A100_TEXT) |
|
|
|
|
|
A100_plotly = gr.components.Plot( |
|
value=A100_plot, |
|
elem_id="1xA100-plot", |
|
show_label=False, |
|
) |
|
|
|
with gr.TabItem("๐ฎ Control Panel ๐๏ธ", id=3): |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
search_bar = gr.Textbox( |
|
label="Model ๐ค", |
|
info="๐ Search for a model name", |
|
elem_id="search-bar", |
|
) |
|
with gr.Column(scale=1): |
|
with gr.Box(): |
|
score_slider = gr.Slider( |
|
label="Open LLM Score ๐", |
|
info="๐๏ธ Slide to minimum Open LLM score", |
|
value=0, |
|
elem_id="threshold-slider", |
|
) |
|
with gr.Column(scale=1): |
|
with gr.Box(): |
|
memory_slider = gr.Slider( |
|
label="Peak Memory (MB) ๐", |
|
info="๐๏ธ Slide to maximum Peak Memory", |
|
minimum=0, |
|
maximum=80 * 1024, |
|
value=80 * 1024, |
|
elem_id="memory-slider", |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
backend_checkboxes = gr.CheckboxGroup( |
|
label="Backends ๐ญ", |
|
choices=["pytorch", "onnxruntime"], |
|
value=["pytorch", "onnxruntime"], |
|
info="โ๏ธ Select the backends", |
|
elem_id="backend-checkboxes", |
|
) |
|
with gr.Column(scale=1): |
|
datatype_checkboxes = gr.CheckboxGroup( |
|
label="Datatypes ๐ฅ", |
|
choices=["float32", "float16"], |
|
value=["float32", "float16"], |
|
info="โ๏ธ Select the load datatypes", |
|
elem_id="datatype-checkboxes", |
|
) |
|
with gr.Column(scale=2): |
|
optimizations_checkboxes = gr.CheckboxGroup( |
|
label="Optimizations ๐ ๏ธ", |
|
choices=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"], |
|
value=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"], |
|
info="โ๏ธ Select the optimizations", |
|
elem_id="optimizations-checkboxes", |
|
) |
|
|
|
with gr.Row(): |
|
filter_button = gr.Button( |
|
value="Filter ๐", |
|
elem_id="filter-button", |
|
) |
|
|
|
with gr.TabItem("โ About ๐", id=4): |
|
gr.Markdown(ABOUT_TEXT) |
|
|
|
demo.load( |
|
change_tab, |
|
A100_tabs, |
|
_js=custom_js, |
|
) |
|
|
|
filter_button.click( |
|
filter_query, |
|
[ |
|
search_bar, |
|
backend_checkboxes, |
|
datatype_checkboxes, |
|
optimizations_checkboxes, |
|
score_slider, |
|
memory_slider, |
|
], |
|
[A100_leaderboard, A100_plotly], |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("๐ Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job( |
|
restart_space, |
|
"interval", |
|
seconds=3600, |
|
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], |
|
) |
|
scheduler.start() |
|
|
|
|
|
demo.queue(concurrency_count=40).launch() |
|
|