|
import gradio as gr |
|
|
|
from src.utils import model_hyperlink, process_score |
|
|
|
|
|
LEADERBOARD_COLUMN_TO_DATATYPE = { |
|
|
|
"Model π€" :"markdown", |
|
"Arch ποΈ" :"markdown", |
|
"Params (B)": "number", |
|
"Open LLM Score (%)": "number", |
|
|
|
"DType π₯" :"str", |
|
"Backend π" :"str", |
|
"Optimization π οΈ" :"str", |
|
"Quantization ποΈ" :"str", |
|
|
|
"Prefill Latency (s)": "number", |
|
"Decode Throughput (tokens/s)": "number", |
|
"Allocated Memory (MB)": "number", |
|
"Energy (tokens/kWh)": "number", |
|
|
|
"E2E Latency (s)": "number", |
|
"E2E Throughput (tokens/s)": "number", |
|
"Reserved Memory (MB)": "number", |
|
"Used Memory (MB)": "number", |
|
} |
|
|
|
|
|
def process_model(model_name): |
|
link = f"https://huggingface.co/{model_name}" |
|
return model_hyperlink(link, model_name) |
|
|
|
|
|
def get_leaderboard_df(llm_perf_df): |
|
df = llm_perf_df.copy() |
|
|
|
df["Model π€"] = df["Model π€"].apply(process_model) |
|
|
|
df["Open LLM Score (%)"] = df.apply( |
|
lambda x: process_score(x["Open LLM Score (%)"], x["Quantization ποΈ"]), |
|
axis=1, |
|
) |
|
return df |
|
|
|
|
|
def create_leaderboard_table(llm_perf_df): |
|
|
|
gr.HTML("π Scroll to the right π for additional columns.", elem_id="text") |
|
|
|
leaderboard_df = get_leaderboard_df(llm_perf_df) |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df, |
|
datatype=list(LEADERBOARD_COLUMN_TO_DATATYPE.values()), |
|
headers=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()), |
|
elem_id="table", |
|
) |
|
|
|
return leaderboard_table |
|
|