|
import gradio as gr |
|
|
|
from src.llm_perf import get_llm_perf_df |
|
from src.leaderboard import get_leaderboard_df |
|
from src.latency_score_memory import get_lat_score_mem_fig |
|
from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig |
|
from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig |
|
from src.quantization_kernels import get_quant_prefill_fig, get_quant_decode_fig |
|
|
|
|
|
def create_control_panel(machine: str = "hf-dgx-01"): |
|
|
|
machine_textbox = gr.Textbox(value=machine, visible=False) |
|
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"): |
|
with gr.Row(): |
|
with gr.Column(scale=1, variant="panel"): |
|
score_slider = gr.Slider( |
|
label="Open LLM Score (%) π", |
|
info="ποΈ Slide to minimum Open LLM score", |
|
value=0, |
|
elem_id="threshold-slider", |
|
) |
|
with gr.Column(scale=1, variant="panel"): |
|
memory_slider = gr.Slider( |
|
label="Peak Memory (MB) π", |
|
info="ποΈ Slide to maximum Peak Memory", |
|
minimum=0, |
|
maximum=80 * 1024, |
|
value=80 * 1024, |
|
elem_id="memory-slider", |
|
) |
|
with gr.Column(scale=1): |
|
backend_checkboxes = gr.CheckboxGroup( |
|
label="Backends π", |
|
choices=["pytorch"], |
|
value=["pytorch"], |
|
info="βοΈ Select the backends", |
|
elem_id="backend-checkboxes", |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1, variant="panel"): |
|
datatype_checkboxes = gr.CheckboxGroup( |
|
label="Load DTypes π₯", |
|
choices=["float32", "float16", "bfloat16"], |
|
value=["float32", "float16", "bfloat16"], |
|
info="βοΈ Select the load data types", |
|
elem_id="dtype-checkboxes", |
|
) |
|
with gr.Column(scale=1, variant="panel"): |
|
optimization_checkboxes = gr.CheckboxGroup( |
|
label="Optimizations π οΈ", |
|
choices=["None", "BetterTransformer", "FlashAttentionV2"], |
|
value=["None", "BetterTransformer", "FlashAttentionV2"], |
|
info="βοΈ Select the optimization", |
|
elem_id="optimization-checkboxes", |
|
) |
|
with gr.Column(scale=2): |
|
quantization_checkboxes = gr.CheckboxGroup( |
|
label="Quantizations ποΈ", |
|
choices=[ |
|
"None", |
|
"BnB.4bit", |
|
"BnB.8bit", |
|
"GPTQ.4bit", |
|
"GPTQ.4bit+ExllamaV1", |
|
"GPTQ.4bit+ExllamaV2", |
|
"AWQ.4bit+GEMM", |
|
"AWQ.4bit+GEMV", |
|
], |
|
value=[ |
|
"None", |
|
"BnB.4bit", |
|
"BnB.8bit", |
|
"GPTQ.4bit", |
|
"GPTQ.4bit+ExllamaV1", |
|
"GPTQ.4bit+ExllamaV2", |
|
"AWQ.4bit+GEMM", |
|
"AWQ.4bit+GEMV", |
|
], |
|
info="βοΈ Select the quantization schemes", |
|
elem_id="quantization-checkboxes", |
|
elem_classes="boxed-option", |
|
) |
|
with gr.Row(): |
|
filter_button = gr.Button( |
|
value="Filter π", |
|
elem_id="filter-button", |
|
elem_classes="boxed-option", |
|
) |
|
|
|
return ( |
|
filter_button, |
|
machine_textbox, |
|
score_slider, |
|
memory_slider, |
|
backend_checkboxes, |
|
datatype_checkboxes, |
|
optimization_checkboxes, |
|
quantization_checkboxes, |
|
) |
|
|
|
|
|
def filter_fn( |
|
machine, |
|
|
|
score, |
|
memory, |
|
backends, |
|
datatypes, |
|
optimizations, |
|
quantizations, |
|
|
|
columns, |
|
search, |
|
): |
|
raw_df = get_llm_perf_df(machine=machine) |
|
filtered_df = raw_df[ |
|
|
|
raw_df["Backend π"].isin(backends) |
|
& raw_df["DType π₯"].isin(datatypes) |
|
& raw_df["Optimization π οΈ"].isin(optimizations) |
|
& raw_df["Quantization ποΈ"].isin(quantizations) |
|
& (raw_df["Open LLM Score (%)"] >= score) |
|
& (raw_df["Allocated Memory (MB)"] <= memory) |
|
] |
|
filtered_leaderboard_df = select_fn(machine, columns, search) |
|
filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_df) |
|
filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df) |
|
filtered_bt_decode_fig = get_bt_decode_fig(filtered_df) |
|
filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df) |
|
filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df) |
|
filtered_quant_prefill_fig = get_quant_prefill_fig(filtered_df) |
|
filtered_quant_decode_fig = get_quant_decode_fig(filtered_df) |
|
|
|
return [ |
|
filtered_leaderboard_df, |
|
filtered_lat_score_mem_fig, |
|
filtered_bt_prefill_fig, |
|
filtered_bt_decode_fig, |
|
filtered_fa2_prefill_fig, |
|
filtered_fa2_decode_fig, |
|
filtered_quant_prefill_fig, |
|
filtered_quant_decode_fig, |
|
] |
|
|
|
|
|
def create_control_callback( |
|
|
|
filter_button, |
|
|
|
machine_textbox, |
|
|
|
score_slider, |
|
memory_slider, |
|
backend_checkboxes, |
|
datatype_checkboxes, |
|
optimization_checkboxes, |
|
quantization_checkboxes, |
|
|
|
columns_checkboxes, |
|
search_bar, |
|
|
|
leaderboard_table, |
|
lat_score_mem_plot, |
|
bt_prefill_plot, |
|
bt_decode_plot, |
|
fa2_prefill_plot, |
|
fa2_decode_plot, |
|
quant_prefill_plot, |
|
quant_decode_plot, |
|
): |
|
filter_button.click( |
|
fn=filter_fn, |
|
inputs=[ |
|
|
|
machine_textbox, |
|
|
|
score_slider, |
|
memory_slider, |
|
backend_checkboxes, |
|
datatype_checkboxes, |
|
optimization_checkboxes, |
|
quantization_checkboxes, |
|
|
|
columns_checkboxes, |
|
search_bar, |
|
], |
|
outputs=[ |
|
leaderboard_table, |
|
lat_score_mem_plot, |
|
bt_prefill_plot, |
|
bt_decode_plot, |
|
fa2_prefill_plot, |
|
fa2_decode_plot, |
|
quant_prefill_plot, |
|
quant_decode_plot, |
|
], |
|
) |
|
|
|
|
|
def select_fn(machine, columns, search): |
|
raw_df = get_llm_perf_df(machine=machine) |
|
selected_leaderboard_df = get_leaderboard_df(raw_df) |
|
selected_leaderboard_df = selected_leaderboard_df[columns] |
|
selected_leaderboard_df = selected_leaderboard_df[ |
|
selected_leaderboard_df["Model π€"].str.contains(search, case=False) |
|
] |
|
|
|
return selected_leaderboard_df |
|
|
|
|
|
def create_select_callback( |
|
|
|
machine_textbox, |
|
|
|
columns_checkboxes, |
|
search_bar, |
|
|
|
leaderboard_table, |
|
): |
|
columns_checkboxes.change( |
|
fn=select_fn, |
|
inputs=[machine_textbox, columns_checkboxes, search_bar], |
|
outputs=[leaderboard_table], |
|
) |
|
search_bar.change( |
|
fn=select_fn, |
|
inputs=[machine_textbox, columns_checkboxes, search_bar], |
|
outputs=[leaderboard_table], |
|
) |
|
|