|
import os |
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT |
|
from src.assets.css_html_js import custom_css, get_window_url_params |
|
from src.utils import restart_space, load_dataset_repo, make_clickable_model |
|
|
|
|
|
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" |
|
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" |
|
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN") |
|
|
|
COLUMNS_MAPPING = { |
|
"model": "Model π€", |
|
"backend.name": "Backend π", |
|
"backend.torch_dtype": "Load Datatype π₯", |
|
"generate.latency(s)": "Latency (s) β¬οΈ", |
|
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", |
|
} |
|
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"] |
|
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"] |
|
|
|
|
|
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) |
|
|
|
|
|
def get_benchmark_df(benchmark): |
|
|
|
df = pd.read_csv( |
|
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") |
|
|
|
df["model"] = df["model"].apply(make_clickable_model) |
|
|
|
df = df[COLUMNS_MAPPING.keys()] |
|
|
|
df.rename(columns=COLUMNS_MAPPING, inplace=True) |
|
|
|
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) |
|
|
|
return df |
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.Row(): |
|
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0): |
|
|
|
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3> |
|
<ul> |
|
<li>Singleton Batch (1)</li> |
|
<li>Thousand Tokens (1000)</li> |
|
</ul> |
|
""" |
|
gr.HTML(SINGLE_A100_TEXT) |
|
|
|
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") |
|
leaderboard_table_lite = gr.components.Dataframe( |
|
value=single_A100_df, |
|
datatype=COLUMNS_DATATYPES, |
|
headers=COLUMNS_MAPPING.values(), |
|
elem_id="1xA100-table", |
|
) |
|
|
|
with gr.Row(): |
|
MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3> |
|
<ul> |
|
<li>Singleton Batch (1)</li> |
|
<li>Thousand Tokens (1000)</li> |
|
</ul>""" |
|
gr.HTML(MULTI_A100_TEXT) |
|
|
|
multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB") |
|
leaderboard_table_full = gr.components.Dataframe( |
|
value=multi_A100_df, |
|
datatype=COLUMNS_DATATYPES, |
|
headers=COLUMNS_MAPPING.values(), |
|
elem_id="4xA100-table", |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=3600, |
|
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN]) |
|
scheduler.start() |
|
|
|
|
|
demo.queue(concurrency_count=40).launch() |
|
|