Spaces:
Running
Running
Create ChatEngine.py
Browse files- ChatEngine.py +44 -0
ChatEngine.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core.base.llms.types import ChatMessage, MessageRole
|
2 |
+
import logging
|
3 |
+
logging.basicConfig(level=logging.INFO)
|
4 |
+
|
5 |
+
|
6 |
+
class ChatEngine:
|
7 |
+
def __init__(self, retriever):
|
8 |
+
"""
|
9 |
+
Initializes the ChatEngine with a retriever and a language model.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
retriever (HybridRetriever): An instance of a retriever to fetch relevant documents.
|
13 |
+
model_name (str): The name of the language model to be used.
|
14 |
+
context_window (int, optional): The maximum context window size for the language model. Defaults to 32000.
|
15 |
+
temperature (float, optional): The temperature setting for the language model. Defaults to 0.
|
16 |
+
"""
|
17 |
+
|
18 |
+
self.retriever = retriever
|
19 |
+
|
20 |
+
def ask_question(self, question, llm):
|
21 |
+
"""
|
22 |
+
Asks a question to the language model, using the retriever to fetch relevant documents.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
question (str): The question to be asked.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
response (str): The response from the language model in markdown format.
|
29 |
+
"""
|
30 |
+
|
31 |
+
question = "[INST]" + question + "[/INST]"
|
32 |
+
|
33 |
+
results = self.retriever.best_docs(question)
|
34 |
+
document = [doc.text for doc, sc in results]
|
35 |
+
logging.info(f"Created Document - len docs:{len(document)}")
|
36 |
+
|
37 |
+
chat_history = f"Question: {question}\n\nDocument: {document}"
|
38 |
+
logging.info("Created Chat History")
|
39 |
+
|
40 |
+
logging.info("Asking LLM")
|
41 |
+
response = llm.generate(chat_history, self.params)
|
42 |
+
|
43 |
+
logging.info("Got Response from LLM, Returning")
|
44 |
+
return response
|