|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("OEvortex/HelpingAI2.5-2B") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI2.5-2B") |
|
|
|
|
|
chat = [ |
|
{ "role": "system", "content": "You are HelpingAI, an emotional AI. Always answer my questions in the HelpingAI style." }, |
|
{ "role": "user", "content": "GIVE ME YOUR INTRO" } |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
chat, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
|
|
outputs = model.generate( |
|
inputs, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
|
|
response = outputs[0][inputs.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
|