Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# init | |
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-NeoXT-Chat-Base-20B") | |
model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-NeoXT-Chat-Base-20B", torch_dtype=torch.bfloat16) | |
# Load a pre-trained Hugging Face model (this example uses GPT-2) | |
generator = pipeline('text-generation', model="mistralai/Mistral-Small-24B-Instruct-2501") | |
# Define the function to be called by the Gradio interface | |
def generate_text(prompt): | |
inputs = tokenizer(f"<human>: {prompt}\n<bot>:", return_tensors='pt').to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8) | |
return tokenizer.decode(outputs[0]) | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, # The function to call | |
inputs="text", # Input is a text field | |
outputs="text", # Output is a text field | |
title="Mistral Text Generator" | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch() | |