remote / app.py
BostjanSpar's picture
Update app.py
dc138cd verified
import torch
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-NeoXT-Chat-Base-20B")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-NeoXT-Chat-Base-20B", torch_dtype=torch.bfloat16)
# Load a pre-trained Hugging Face model (this example uses GPT-2)
generator = pipeline('text-generation', model="mistralai/Mistral-Small-24B-Instruct-2501")
# Define the function to be called by the Gradio interface
def generate_text(prompt):
inputs = tokenizer(f"<human>: {prompt}\n<bot>:", return_tensors='pt').to(model.device)
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
return tokenizer.decode(outputs[0])
# Define the Gradio interface
iface = gr.Interface(
fn=generate_text, # The function to call
inputs="text", # Input is a text field
outputs="text", # Output is a text field
title="Mistral Text Generator"
)
# Launch the interface
if __name__ == "__main__":
iface.launch()