wop's picture
Update app.py
0af0fc5 verified
raw
history blame
3.46 kB
from transformers import pipeline
import gradio as gr
import json
# Initialize the pipeline with the new model
pipe = pipeline("text-generation", model="Blexus/Quble_test_model_v1_INSTRUCT_v1")
DATABASE_PATH = "database.json"
def load_database():
try:
with open(DATABASE_PATH, "r") as file:
return json.load(file)
except FileNotFoundError:
return {}
def save_database(database):
with open(DATABASE_PATH, "w") as file:
json.dump(database, file)
def format_prompt(message, system, history):
prompt = f"SYSTEM: {system}\n<|endofsystem|>\n"
for entry in history:
if len(entry) == 2:
user_prompt, bot_response = entry
prompt += f"USER: {user_prompt}\n\n\nASSISTANT: {bot_response}<|endoftext|>\n"
prompt += f"USER: {message}\n\n\nASSISTANT:"
return prompt
def generate(prompt, system, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2):
database = load_database()
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = format_prompt(prompt, system, history)
response_text = "We are sorry but Quble doesn't know how to answer."
if formatted_prompt in database:
response_text = database[formatted_prompt]
else:
# Use the pipeline to generate the response
try:
# Stream the response
for response in pipe(formatted_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, return_full_text=False, streaming=True):
assistant_response = response["generated_text"].split("ASSISTANT:")[-1].strip()
yield assistant_response
# Save the generated response to the database after the stream
database[formatted_prompt] = assistant_response
save_database(database)
except Exception as e:
print(f"Error generating response: {e}")
customCSS = """
#component-7 { # this is the default element ID of the chat component
height: 1600px; # adjust the height as needed
flex-grow: 4;
}
"""
additional_inputs = [
gr.Textbox(
label="System prompt",
value="You are a helpful assistant, with no access to external functions.",
info="System prompt",
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1024,
minimum=64,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
)
demo.queue().launch(debug=True)