BestWishYsh commited on
Commit
7216e31
·
verified ·
1 Parent(s): b65930c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -7
app.py CHANGED
@@ -43,12 +43,10 @@ else:
43
 
44
 
45
  # 1. Prepare all the face models
46
- face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models(model_path, device, dtype)
47
 
48
 
49
  # 2. Load Pipeline.
50
- transformer = ConsisIDTransformer3DModel.from_pretrained_cus(model_path, subfolder=subfolder)
51
- transformer.to(device, dtype=dtype)
52
  pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, torch_dtype=dtype)
53
 
54
  # If you're using with lora, add this code
@@ -58,10 +56,6 @@ if lora_path:
58
 
59
 
60
  # 3. Move to device.
61
- face_helper_1.face_det.to(device)
62
- face_helper_1.face_parse.to(device)
63
- face_clip_model.to(device, dtype=dtype)
64
- transformer.to(device, dtype=dtype)
65
  pipe.to(device)
66
  # Save Memory. Turn on if you don't have multiple GPUs or enough GPU memory(such as H100) and it will cost more time in inference, it may also reduce the quality
67
  pipe.enable_model_cpu_offload()
 
43
 
44
 
45
  # 1. Prepare all the face models
46
+ face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models(model_path, device, dtype)
47
 
48
 
49
  # 2. Load Pipeline.
 
 
50
  pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, torch_dtype=dtype)
51
 
52
  # If you're using with lora, add this code
 
56
 
57
 
58
  # 3. Move to device.
 
 
 
 
59
  pipe.to(device)
60
  # Save Memory. Turn on if you don't have multiple GPUs or enough GPU memory(such as H100) and it will cost more time in inference, it may also reduce the quality
61
  pipe.enable_model_cpu_offload()