|
from collections import abc
|
|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
|
|
def upfirdn2d(inputs, kernel, up=1, down=1, pad=(0, 0)):
|
|
if not isinstance(up, abc.Iterable):
|
|
up = (up, up)
|
|
|
|
if not isinstance(down, abc.Iterable):
|
|
down = (down, down)
|
|
|
|
if len(pad) == 2:
|
|
pad = (pad[0], pad[1], pad[0], pad[1])
|
|
|
|
return upfirdn2d_native(inputs, kernel, *up, *down, *pad)
|
|
|
|
|
|
def upfirdn2d_native(
|
|
inputs, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
|
):
|
|
_, channel, in_h, in_w = inputs.shape
|
|
inputs = inputs.reshape(-1, in_h, in_w, 1)
|
|
|
|
_, in_h, in_w, minor = inputs.shape
|
|
kernel_h, kernel_w = kernel.shape
|
|
|
|
out = inputs.view(-1, in_h, 1, in_w, 1, minor)
|
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
|
|
|
out = F.pad(
|
|
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
|
)
|
|
out = out[
|
|
:,
|
|
max(-pad_y0, 0): out.shape[1] - max(-pad_y1, 0),
|
|
max(-pad_x0, 0): out.shape[2] - max(-pad_x1, 0),
|
|
:,
|
|
]
|
|
|
|
out = out.permute(0, 3, 1, 2)
|
|
out = out.reshape(
|
|
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
|
)
|
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
|
out = F.conv2d(out, w)
|
|
out = out.reshape(
|
|
-1,
|
|
minor,
|
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
|
)
|
|
out = out.permute(0, 2, 3, 1)
|
|
out = out[:, ::down_y, ::down_x, :]
|
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
|
|
|
return out.view(-1, channel, out_h, out_w) |