import os import cv2 import torch from model import U2NET from torch.autograd import Variable import numpy as np from huggingface_hub import hf_hub_download import gradio as gr class PortraitGenerator: def __init__(self): self.u2net = self.load_u2net_model() def normPRED(self, d): return (d - torch.min(d)) / (torch.max(d) - torch.min(d)) def inference(self, input_img): input_img = input_img / np.max(input_img) tmpImg = np.zeros((input_img.shape[0], input_img.shape[1], 3)) tmpImg[:, :, 0] = (input_img[:, :, 2] - 0.406) / 0.225 tmpImg[:, :, 1] = (input_img[:, :, 1] - 0.456) / 0.224 tmpImg[:, :, 2] = (input_img[:, :, 0] - 0.485) / 0.229 tmpImg = torch.from_numpy(tmpImg.transpose((2, 0, 1))[np.newaxis, :, :, :]).type(torch.FloatTensor) tmpImg = Variable(tmpImg.cuda() if torch.cuda.is_available() else tmpImg) d1, _, _, _, _, _, _ = self.u2net(tmpImg) pred = self.normPRED(1.0 - d1[:, 0, :, :]) return pred.cpu().data.numpy().squeeze() def adjust_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction): # Convert to grayscale if needed if apply_bw: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Adjust brightness and contrast img = cv2.convertScaleAbs(img, alpha=contrast / 50.0, beta=brightness - 50) # Adjust saturation if saturation != 50: hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hsv_img[:, :, 1] = np.clip(hsv_img[:, :, 1] * (saturation / 50.0), 0, 255) img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR) # Adjust white balance if white_balance != 50: img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) l, a, b = cv2.split(img) a = a * (white_balance / 50.0) b = b * (white_balance / 50.0) img = cv2.merge((l, a, b)) img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR) # Adjust hue if hue != 50: hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hsv_img[:, :, 0] = np.clip(hsv_img[:, :, 0] * (hue / 50.0), 0, 180) img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR) # Adjust highlights and shadows if highlights_shadows != 50: img = cv2.convertScaleAbs(img, alpha=1.0, beta=(highlights_shadows - 50) * 5.1) # Adjust sharpness if sharpness != 50: kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) * (sharpness / 50.0) img = cv2.filter2D(img, -1, kernel) # Reduce noise if noise_reduction != 50: img = cv2.fastNlMeansDenoisingColored(img, None, noise_reduction / 50.0 * 10, noise_reduction / 50.0 * 10, 7, 21) return img def process_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction, apply_adjustments, generate_final): if not generate_final: preview_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction) return preview_img adjusted_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction) result = self.inference(adjusted_img) return (result * 255).astype(np.uint8) def load_u2net_model(self): model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN")) net = U2NET(3, 1) net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu")) net.eval() return net def main(): portrait_generator = PortraitGenerator() iface = gr.Interface( fn=portrait_generator.process_image, inputs=[ gr.Image(type="numpy", label="Upload your image"), gr.Checkbox(label="Black & White Image"), gr.Slider(0, 100, value=50, label="Brightness"), gr.Slider(0, 100, value=50, label="Contrast"), gr.Slider(0, 100, value=50, label="Saturation"), gr.Slider(0, 100, value=50, label="White Balance"), gr.Slider(0, 100, value=50, label="Hue"), gr.Slider(0, 100, value=50, label="Highlights and Shadows"), gr.Slider(0, 100, value=50, label="Sharpness"), gr.Slider(0, 100, value=50, label="Noise Reduction"), gr.Checkbox(label="Apply Adjustments"), gr.Checkbox(label="Generate Final Portrait") ], outputs=gr.Image(type="numpy", label="Preview or Portrait Result"), title="Portrait Generation with U2NET", description="Upload an image to generate its portrait with optional adjustments. Enable 'Generate Final Portrait' for final output." ) iface.launch() if __name__ == "__main__": main()