Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,111 +7,54 @@ import numpy as np
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import gradio as gr
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
img = cv2.convertScaleAbs(img, alpha=1.0, beta=(highlights_shadows - 50) * 5.1)
|
62 |
-
|
63 |
-
# Adjust sharpness
|
64 |
-
if sharpness != 50:
|
65 |
-
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) * (sharpness / 50.0)
|
66 |
-
img = cv2.filter2D(img, -1, kernel)
|
67 |
-
|
68 |
-
# Reduce noise
|
69 |
-
if noise_reduction != 50:
|
70 |
-
img = cv2.fastNlMeansDenoisingColored(img, None, noise_reduction / 50.0 * 10, noise_reduction / 50.0 * 10, 7, 21)
|
71 |
-
|
72 |
-
return img
|
73 |
-
|
74 |
-
def process_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction, apply_adjustments, generate_final):
|
75 |
-
if not generate_final:
|
76 |
-
preview_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction)
|
77 |
-
return preview_img
|
78 |
-
|
79 |
-
adjusted_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction)
|
80 |
-
result = self.inference(adjusted_img)
|
81 |
-
return (result * 255).astype(np.uint8)
|
82 |
-
|
83 |
-
def load_u2net_model(self):
|
84 |
-
model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN"))
|
85 |
-
net = U2NET(3, 1)
|
86 |
-
net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu"))
|
87 |
-
net.eval()
|
88 |
-
return net
|
89 |
-
|
90 |
-
def main():
|
91 |
-
portrait_generator = PortraitGenerator()
|
92 |
-
|
93 |
-
iface = gr.Interface(
|
94 |
-
fn=portrait_generator.process_image,
|
95 |
-
inputs=[
|
96 |
-
gr.Image(type="numpy", label="Upload your image"),
|
97 |
-
gr.Checkbox(label="Black & White Image"),
|
98 |
-
gr.Slider(0, 100, value=50, label="Brightness"),
|
99 |
-
gr.Slider(0, 100, value=50, label="Contrast"),
|
100 |
-
gr.Slider(0, 100, value=50, label="Saturation"),
|
101 |
-
gr.Slider(0, 100, value=50, label="White Balance"),
|
102 |
-
gr.Slider(0, 100, value=50, label="Hue"),
|
103 |
-
gr.Slider(0, 100, value=50, label="Highlights and Shadows"),
|
104 |
-
gr.Slider(0, 100, value=50, label="Sharpness"),
|
105 |
-
gr.Slider(0, 100, value=50, label="Noise Reduction"),
|
106 |
-
gr.Checkbox(label="Apply Adjustments"),
|
107 |
-
gr.Checkbox(label="Generate Final Portrait")
|
108 |
-
],
|
109 |
-
outputs=gr.Image(type="numpy", label="Preview or Portrait Result"),
|
110 |
-
title="Portrait Generation with U2NET",
|
111 |
-
description="Upload an image to generate its portrait with optional adjustments. Enable 'Generate Final Portrait' for final output."
|
112 |
-
)
|
113 |
-
|
114 |
-
iface.launch()
|
115 |
-
|
116 |
-
if __name__ == "__main__":
|
117 |
-
main()
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# Chuẩn hóa dự đoán
|
11 |
+
def normPRED(d):
|
12 |
+
return (d - torch.min(d)) / (torch.max(d) - torch.min(d))
|
13 |
+
|
14 |
+
# Hàm suy luận với U2NET
|
15 |
+
def inference(net, input_img):
|
16 |
+
input_img = input_img / np.max(input_img)
|
17 |
+
tmpImg = np.zeros((input_img.shape[0], input_img.shape[1], 3))
|
18 |
+
tmpImg[:, :, 0] = (input_img[:, :, 2] - 0.406) / 0.225
|
19 |
+
tmpImg[:, :, 1] = (input_img[:, :, 1] - 0.456) / 0.224
|
20 |
+
tmpImg[:, :, 2] = (input_img[:, :, 0] - 0.485) / 0.229
|
21 |
+
tmpImg = torch.from_numpy(tmpImg.transpose((2, 0, 1))[np.newaxis, :, :, :]).type(torch.FloatTensor)
|
22 |
+
tmpImg = Variable(tmpImg.cuda() if torch.cuda.is_available() else tmpImg)
|
23 |
+
d1, _, _, _, _, _, _ = net(tmpImg)
|
24 |
+
pred = normPRED(1.0 - d1[:, 0, :, :])
|
25 |
+
return pred.cpu().data.numpy().squeeze()
|
26 |
+
|
27 |
+
# Hàm chính để xử lý ảnh đầu vào và trả về ảnh chân dung
|
28 |
+
def process_image(img, bw_option):
|
29 |
+
# Chuyển đổi ảnh thành đen trắng nếu được chọn
|
30 |
+
if bw_option:
|
31 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Chuyển lại thành ảnh 3 kênh cho mô hình
|
33 |
+
# Chạy suy luận để tạo ảnh chân dung
|
34 |
+
result = inference(u2net, img)
|
35 |
+
return (result * 255).astype(np.uint8)
|
36 |
+
|
37 |
+
# Tải mô hình từ Hugging Face Hub
|
38 |
+
def load_u2net_model():
|
39 |
+
model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN"))
|
40 |
+
net = U2NET(3, 1)
|
41 |
+
net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu"))
|
42 |
+
net.eval()
|
43 |
+
return net
|
44 |
+
|
45 |
+
# Khởi tạo mô hình U2NET
|
46 |
+
u2net = load_u2net_model()
|
47 |
+
|
48 |
+
# Tạo giao diện với Gradio
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=process_image,
|
51 |
+
inputs=[
|
52 |
+
gr.Image(type="numpy", label="Upload your image"),
|
53 |
+
gr.Checkbox(label="Convert to Black & White?", value=False) # Thêm tùy chọn tick
|
54 |
+
],
|
55 |
+
outputs=gr.Image(type="numpy", label="Portrait Result"),
|
56 |
+
title="Portrait Generation with U2NET",
|
57 |
+
description="Upload an image to generate its portrait."
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|