Spaces:
Running
Running
import os | |
import cv2 | |
import torch | |
from model import U2NET | |
from torch.autograd import Variable | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
# Hàm phát hiện một khuôn mặt duy nhất | |
def detect_single_face(face_cascade, img): | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.1, 4) | |
if len(faces) == 0: | |
print("Warning: No face detected, running on the whole image!") | |
return None | |
wh, idx = 0, 0 | |
for i, (x, y, w, h) in enumerate(faces): | |
if w * h > wh: | |
idx, wh = i, w * h | |
return faces[idx] | |
# Hàm cắt và chuẩn hóa khuôn mặt | |
def crop_face(img, face): | |
if face is None: | |
return img | |
(x, y, w, h) = face | |
height, width = img.shape[:2] | |
lpad, rpad, tpad, bpad = int(w * 0.4), int(w * 0.4), int(h * 0.6), int(h * 0.2) | |
left, right = max(0, x - lpad), min(width, x + w + rpad) | |
top, bottom = max(0, y - tpad), min(height, y + h + bpad) | |
im_face = img[top:bottom, left:right] | |
if len(im_face.shape) == 2: | |
im_face = np.repeat(im_face[:, :, np.newaxis], 3, axis=2) | |
im_face = np.pad(im_face, ((tpad, bpad), (lpad, rpad), (0, 0)), mode='constant', constant_values=255) | |
im_face = cv2.resize(im_face, (512, 512), interpolation=cv2.INTER_AREA) | |
return im_face | |
# Chuẩn hóa dự đoán | |
def normPRED(d): | |
return (d - torch.min(d)) / (torch.max(d) - torch.min(d)) | |
# Hàm suy luận với U2NET | |
def inference(net, input_img): | |
input_img = input_img / np.max(input_img) | |
tmpImg = np.zeros((input_img.shape[0], input_img.shape[1], 3)) | |
tmpImg[:, :, 0] = (input_img[:, :, 2] - 0.406) / 0.225 | |
tmpImg[:, :, 1] = (input_img[:, :, 1] - 0.456) / 0.224 | |
tmpImg[:, :, 2] = (input_img[:, :, 0] - 0.485) / 0.229 | |
tmpImg = torch.from_numpy(tmpImg.transpose((2, 0, 1))[np.newaxis, :, :, :]).type(torch.FloatTensor) | |
tmpImg = Variable(tmpImg.cuda() if torch.cuda.is_available() else tmpImg) | |
d1, _, _, _, _, _, _ = net(tmpImg) | |
pred = normPRED(1.0 - d1[:, 0, :, :]) | |
return pred.cpu().data.numpy().squeeze() | |
# Hàm chính để xử lý ảnh đầu vào và trả về ảnh chân dung | |
def process_image(img): | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
face = detect_single_face(face_cascade, img) | |
cropped_face = crop_face(img, face) | |
result = inference(u2net, cropped_face) | |
return (result * 255).astype(np.uint8) | |
# Tải mô hình từ Hugging Face Hub | |
def load_u2net_model(): | |
model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN")) | |
net = U2NET(3, 1) | |
net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu")) | |
net.eval() | |
return net | |
# Khởi tạo mô hình U2NET | |
u2net = load_u2net_model() | |
# Tạo giao diện với Gradio | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="numpy", label="Upload your image"), | |
outputs=gr.Image(type="numpy", label="Portrait Result"), | |
title="Portrait Generation with U2NET", | |
description="Upload an image to generate its portrait." | |
) | |
iface.launch() | |