X_u2net_portraits / app(23).py
Arrcttacsrks's picture
Upload 2 files
df65035 verified
raw
history blame
4.67 kB
import os
import cv2
import torch
from model import U2NET
from torch.autograd import Variable
import numpy as np
from huggingface_hub import hf_hub_download
import gradio as gr
# Hàm phát hiện một khuôn mặt duy nhất
def detect_single_face(face_cascade, img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
if len(faces) == 0:
print("Warning: No face detected, running on the whole image!")
return None
wh, idx = 0, 0
for i, (x, y, w, h) in enumerate(faces):
if w * h > wh:
idx, wh = i, w * h
return faces[idx]
# Hàm cắt và chuẩn hóa khuôn mặt
def crop_face(img, face):
if face is None:
return img
(x, y, w, h) = face
height, width = img.shape[:2]
lpad, rpad, tpad, bpad = int(w * 0.4), int(w * 0.4), int(h * 0.6), int(h * 0.2)
left, right = max(0, x - lpad), min(width, x + w + rpad)
top, bottom = max(0, y - tpad), min(height, y + h + bpad)
im_face = img[top:bottom, left:right]
if len(im_face.shape) == 2:
im_face = np.repeat(im_face[:, :, np.newaxis], 3, axis=2)
im_face = np.pad(im_face, ((tpad, bpad), (lpad, rpad), (0, 0)), mode='constant', constant_values=255)
im_face = cv2.resize(im_face, (512, 512), interpolation=cv2.INTER_AREA)
return im_face
# Chuẩn hóa dự đoán
def normPRED(d):
return (d - torch.min(d)) / (torch.max(d) - torch.min(d))
# Hàm suy luận với U2NET
def inference(net, input_img):
input_img = input_img / np.max(input_img)
tmpImg = np.zeros((input_img.shape[0], input_img.shape[1], 3))
tmpImg[:, :, 0] = (input_img[:, :, 2] - 0.406) / 0.225
tmpImg[:, :, 1] = (input_img[:, :, 1] - 0.456) / 0.224
tmpImg[:, :, 2] = (input_img[:, :, 0] - 0.485) / 0.229
tmpImg = torch.from_numpy(tmpImg.transpose((2, 0, 1))[np.newaxis, :, :, :]).type(torch.FloatTensor)
tmpImg = Variable(tmpImg.cuda() if torch.cuda.is_available() else tmpImg)
d1, _, _, _, _, _, _ = net(tmpImg)
pred = normPRED(1.0 - d1[:, 0, :, :])
return pred.cpu().data.numpy().squeeze()
# Hàm chính để xử lý ảnh đầu vào và trả về ảnh chân dung
def process_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction,
apply_adjustments):
# Chuyển ảnh sang đen trắng nếu cần
if apply_bw:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# Áp dụng các điều chỉnh nếu được yêu cầu
if apply_adjustments:
# Độ sáng và Độ tương phản
img = cv2.convertScaleAbs(img, alpha=contrast / 50.0, beta=brightness - 50)
# Độ bão hòa, Cân bằng trắng, và các điều chỉnh khác (phải tự viết hàm hoặc sử dụng thư viện chuyên biệt)
# Placeholder cho các điều chỉnh cần thiết ở đây
# Phát hiện và cắt khuôn mặt
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
face = detect_single_face(face_cascade, img)
cropped_face = crop_face(img, face)
result = inference(u2net, cropped_face)
return (result * 255).astype(np.uint8)
# Tải mô hình từ Hugging Face Hub
def load_u2net_model():
model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN"))
net = U2NET(3, 1)
net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu"))
net.eval()
return net
# Khởi tạo mô hình U2NET
u2net = load_u2net_model()
# Tạo giao diện với Gradio
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="numpy", label="Upload your image"),
gr.Checkbox(label="Black & White Image"),
gr.Slider(0, 100, value=50, label="Brightness"),
gr.Slider(0, 100, value=50, label="Contrast"),
gr.Slider(0, 100, value=50, label="Saturation"),
gr.Slider(0, 100, value=50, label="White Balance"),
gr.Slider(0, 100, value=50, label="Hue"),
gr.Slider(0, 100, value=50, label="Highlights and Shadows"),
gr.Slider(0, 100, value=50, label="Sharpness"),
gr.Slider(0, 100, value=50, label="Noise Reduction"),
gr.Checkbox(label="Apply Adjustments")
],
outputs=gr.Image(type="numpy", label="Portrait Result"),
title="Portrait Generation with U2NET",
description="Upload an image to generate its portrait with optional adjustments."
)
iface.launch()