Arjun9 commited on
Commit
68bd056
·
verified ·
1 Parent(s): f6bad57

Delete application.py

Browse files
Files changed (1) hide show
  1. application.py +0 -26
application.py DELETED
@@ -1,26 +0,0 @@
1
- import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
-
4
- # Set page title and header
5
- st.set_page_config(page_title="Text Summarizer", page_icon=":memo:")
6
- st.header("Text Summarizer using Arjun9/bart_samsum")
7
-
8
- # Load model and tokenizer
9
- model_name = "Arjun9/bart_samsum"
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
12
-
13
- # Create text input area
14
- input_text = st.text_area("Enter the text you want to summarize:", "")
15
-
16
- # Create a function to generate summary
17
- def generate_summary(text):
18
- inputs = tokenizer.encode_plus(text, return_tensors="pt", max_length=512, truncation=True)
19
- outputs = model.generate(inputs["input_ids"], num_beams=4, max_length=128, early_stopping=True)
20
- summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
- return summary
22
-
23
- # Display summary if input text is provided
24
- if input_text:
25
- summary = generate_summary(input_text)
26
- st.write("**Summary:**", summary)