Arjun9's picture
Update app.py
285087f verified
import streamlit as st
from transformers import BartForConditionalGeneration, BartTokenizer
st.set_page_config(page_title="BART Text Summarization", layout="centered")
@st.cache_resource
def load_model():
model = BartForConditionalGeneration.from_pretrained("Arjun9/bart_samsum")
tokenizer = BartTokenizer.from_pretrained("Arjun9/bart_samsum")
return model, tokenizer
model, tokenizer = load_model()
def main():
st.title("Meeting summarization")
# Get user input
input_text = st.text_area("Enter text to summarize", height=200)
if st.button("Summarize"):
# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
# Generate summary
summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Display the summary
st.write(f"Summary: {summary}")
if __name__ == "__main__":
main()