Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import BartForConditionalGeneration, BartTokenizer | |
st.set_page_config(page_title="BART Text Summarization", layout="centered") | |
def load_model(): | |
model = BartForConditionalGeneration.from_pretrained("Arjun9/bart_samsum") | |
tokenizer = BartTokenizer.from_pretrained("Arjun9/bart_samsum") | |
return model, tokenizer | |
model, tokenizer = load_model() | |
def main(): | |
st.title("Meeting summarization") | |
# Get user input | |
input_text = st.text_area("Enter text to summarize", height=200) | |
if st.button("Summarize"): | |
# Tokenize the input text | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True) | |
# Generate summary | |
summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Display the summary | |
st.write(f"Summary: {summary}") | |
if __name__ == "__main__": | |
main() | |